📄 far_gd.m
字号:
% PURPOSE: An example of using far_g() Gibbs sampling
% 1st-order spatial autoregressive model
% (on a small data set)
%---------------------------------------------------
% USAGE: far_gd (see also far_gd2 for a large data set)
%---------------------------------------------------
clear all;
% W-matrix from Anselin's neigbhorhood crime data set
load anselin.dat; % standardized 1st-order spatial weight matrix
xc = anselin(:,4);
yc = anselin(:,5);
[j1 W j2] = xy2cont(xc,yc);
[n junk] = size(W);
In = speye(n);
rho = 0.7; % true value of rho
sige = 1;
y = (In-rho*W)\(randn(n,1)*sqrt(sige));
ydev = y - mean(y);
vnames = strvcat('y-simulated','y-spatial lag');
% do maximum likelihood for comparison
info.rmin = 0;
info.rmax = 1; % constrain 0 < rho < 1
result1 = far(ydev,W,info);
disp('True value of rho = 0.7');
prt(result1,vnames);
ndraw = 2200;
nomit = 200;
% Gibbs sampling function homoscedastic prior
prior.rval = 200; % homoscedastic prior for comparison
% to maximum likelihood estimates
result2 = far_g(ydev,W,ndraw,nomit,prior);
disp('True value of rho = 0.7');
result.tflag = 'tstat';
prt(result2,vnames);
plt(result2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -