📄 far.m
字号:
function results = far(y,W,info)
% PURPOSE: computes 1st-order spatial autoregressive estimates
% y = iota + p*W*y + e, using sparse matrix algorithms
% ---------------------------------------------------
% USAGE: results = far(y,W,info)
% where: y = dependent variable vector
% W = standardized contiguity matrix
% info = a structure variable with input options
% info.rmin = (optional) minimum value of rho to use in search
% info.rmax = (optional) maximum value of rho to use in search
% info.convg = (optional) convergence criterion (default = 1e-8)
% info.maxit = (optional) maximum # of iterations (default = 500)
% info.lflag = 0 for full computation (default = 1, fastest)
% = 1 for Pace and Barry 1999 MC approximation (fast for very large problems)
% = 2 for Pace and Barry 1998 Spline approximation (medium speed)
% info.order = order to use with info.lflag = 1 option (default = 50)
% info.iter = iterations to use with info.lflag = 1 option (default = 30)
% info.lndet = a matrix returned by sar, sar_g, sarp_g, etc.
% containing log-determinant information to save time
% ---------------------------------------------------
% RETURNS: a structure
% results.meth = 'far'
% results.rho = rho
% results.tstat = asymptotic t-stat
% results.yhat = yhat
% results.resid = residuals
% results.sige = sige = (y-p*W*y)'*(y-p*W*y)/n
% results.rsqr = rsquared
% results.lik = log likelihood
% results.nobs = nobs
% results.nvar = nvar = 1
% results.y = y data vector
% results.iter = # of iterations taken
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.lflag = lflag from input
% results.liter = info.iter option from input
% results.order = info.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95] intervals
% for the case of lflag = 1
% results.time1 = time for log determinant calcluation
% results.time2 = time for eigenvalue calculation
% results.time3 = time for hessian or information matrix calculation
% results.time4 = time for optimization
% results.time = total time taken
% results.lndet = a matrix containing log-determinant information
% (for use in later function calls to save time)
% --------------------------------------------------
% NOTES: if you use lflag = 1 or 2, info.rmin will be set = -1
% info.rmax will be set = 1
% For n < 1000 you should use lflag = 0 to get exact results
% --------------------------------------------------
% SEE ALSO: prt(results), sar, sem, sac, sdm
% ---------------------------------------------------
% REFERENCES: Anselin (1988), pages 180-182.
% Ronald Barry and R. Kelley Pace, "A Monte Carlo Estimator
% of the Log Determinant of Large Sparse Matrices", Linear Algebra and
% its Applications", Volume 289, Number 1-3, 1999, pp. 41-54.
% R. Kelley Pace and Ronald P. Barry "Simulating Mixed Regressive
% Spatially autoregressive Estimators", Computational Statistics, 1998,
% Vol. 13, pp. 397-418.
% ---------------------------------------------------
% written by:
% James P. LeSage, Dept of Economics 4/2002
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial.econometrics.com
% NOTE: much of the speed for large problems comes from:
% the use of methods pioneered by Pace and Barry.
% R. Kelley Pace was kind enough to provide functions
% lndetmc, and lndetint from his spatial statistics toolbox
% for which I'm very grateful.
time1 = 0;
time2 = 0;
time3 = 0;
timet = clock; % start the clock for overall timing
% if we have no options, invoke defaults
if nargin == 2
info.lflag = 1;
end;
% parse input options
[rmin,rmax,convg,maxit,detval,ldetflag,eflag,order,iter,options] = far_parse(info);
% do some error checking
[n junk] = size(y);
% test if W-matrix has the correct number of observations
[nchk1 nchk2] = size(W);
if nchk1 ~= n
error('far: Wrong size W-matrix');
end;
% compute eigenvalues or limits
[rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,n);
% do log-det calculations
[detval,time1] = far_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% step 1) maximize concentrated likelihood function;
t0 = clock;
[p,liktmp,exitflag,output] = fminbnd('f_far',rmin,rmax,options,y,W,detval);
time4 = etime(clock,t0);
if output.iterations == options.MaxIter;
fprintf(1,'far: convergence not obtained in %4d iterations \n',output.iterations);
end;
results.miter = output.iterations;
% step 2) find sige
Wy = sparse(W)*y;
e = (speye(n) - p*W)*y;
yhat = y - e;
epe = e'*e;
sige = epe/n;
results.rho = p;
results.yhat = yhat;
results.resid = e;
results.sige = sige;
results.lik = -(liktmp + (n/2)*log(sige));
parm = [p
sige];
% asymptotic t-stats
if n <= 500
% asymptotic t-stats based on information matrix
% (page 50 Anselin, 1980)
t0 = clock;
B = speye(n) - p*sparse(W);
xpxi = zeros(2,2);
term1 = trace(inv(B'*B)*(W'*W)); xpxi(1,1) = term1;
xpxi(2,2) = n/(2*sige*sige); % sige,sige term
xpxi(1,2) = -(1/sige)*(p*term1 - trace(inv(B'*B)*W));
xpxi(2,1) = xpxi(1,2); % sige,rho term
xpxi = invpd(xpxi);
time3 = etime(clock,t0);
results.tstat = results.rho./(sqrt(xpxi(1,1)));
results.ssige = sqrt(xpxi(2,2));
elseif n > 500 & ldetflag > 0 % use numerical hessian and fast Pace approximation
t0 = clock;
hessn = hessian('f2_far',parm,y,W,detval);
time3 = etime(clock,t0);
if hessn(2,2) == 0
hessn(2,2) = 1/sige; % this is a hack for very large
end; % spatial autoregressive models
% should not affect inference in these cases
xpxi = invpd(hessn);
results.tstat = results.rho/sqrt(xpxi(1,1));
elseif n > 500 & ldetflag == 0 % use numerical hessian and slow method
t0 = clock;
hessn = hessian('f2_far',parm,y,W);
time3 = etime(clock,t0);
xpxi = invpd(hessn);
results.tstat = results.rho/sqrt(xpxi(1,1));
end; % end of t-stat calculations
ym = y - mean(y); % r-squared, rbar-squared
rsqr1 = results.resid'*results.resid;
rsqr2 = ym'*ym;
results.rsqr = 1.0-rsqr1/rsqr2; % r-squared
results.lndet = detval;
time = etime(clock,timet);
results.meth = 'far';
results.y = y;
results.nobs = n;
results.nvar = 1;
results.order = order;
results.iter = iter;
results.rmax = rmax;
results.rmin = rmin;
results.lflag = ldetflag;
results.lndet = detval;
% send back timing information
results.time = time;
results.time1 = time1;
results.time2 = time2;
results.time3 = time3;
results.time4 = time4;
function [rmin,rmax,convg,maxit,detval,ldetflag,eflag,order,iter,options] = far_parse(info)
% PURPOSE: parses input arguments for far, far_g models
% ---------------------------------------------------
% USAGE: [rmin,rmax,convg,maxit,detval,ldetflag,eflag,order,iter] = far_parse(info)
% where info contains the structure variable with inputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% set defaults
options = optimset('fminbnd');
options.MaxIter = 500;
eflag = 0; % default to not computing eigenvalues
ldetflag = 1; % default to 1999 Pace and Barry MC determinant approx
order = 50; % there are parameters used by the MC det approx
iter = 30; % defaults based on Pace and Barry recommendation
rmin = -1; % use -1,1 rho interval as default
rmax = 1;
detval = 0; % just a flag
maxit = 500;
convg = 0.0001;
fields = fieldnames(info);
nf = length(fields);
if nf > 0
for i=1:nf
if strcmp(fields{i},'rmin')
rmin = info.rmin; eflag = 1;
elseif strcmp(fields{i},'rmax')
rmax = info.rmax; eflag = 1;
elseif strcmp(fields{i},'convg')
options.TolFun = info.convg;
elseif strcmp(fields{i},'maxit')
options.MaxIter = info.maxit;
elseif strcmp(fields{i},'lndet')
detval = info.lndet;
ldetflag = -1;
eflag = 1;
rmin = detval(1,1);
nr = length(detval);
rmax = detval(nr,1);
elseif strcmp(fields{i},'lflag')
tst = info.lflag;
if tst == 0,
ldetflag = 0; eflag = 0; % compute eigenvalues
elseif tst == 1,
ldetflag = 1; eflag = 1; % reset this from default
elseif tst == 2,
ldetflag = 2; eflag = 1; % reset this from default
else
error('far: unrecognizable lflag value on input');
end;
elseif strcmp(fields{i},'order')
order = info.order;
elseif strcmp(fields{i},'iter')
iter = info.iter;
end;
end;
else, % the user has input a blank info structure
% so we use the defaults
end;
function [rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,n);
% PURPOSE: compute the eigenvalues for the weight matrix
% ---------------------------------------------------
% USAGE: [rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,W)
% where eflag is an input flag, W is the weight matrix
% rmin,rmax may be used as default outputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
if eflag == 0
t0 = clock;
opt.tol = 1e-3; opt.disp = 0;
lambda = eigs(sparse(W),speye(n),1,'SR',opt);
rmin = 1/lambda;
rmax = 1;
time2 = etime(clock,t0);
else
time2 = 0;
end;
function [detval,time1] = far_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% PURPOSE: compute the log determinant |I_n - rho*W|
% using the user-selected (or default) method
% ---------------------------------------------------
% USAGE: detval = far_lndet(lflag,W,rmin,rmax)
% where eflag,rmin,rmax,W contains input flags
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% do lndet approximation calculations if needed
if ldetflag == 0 % no approximation
t0 = clock;
out = lndetfull(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 1 % use Pace and Barry, 1999 MC approximation
t0 = clock;
out = lndetmc(order,iter,W,rmin,rmax);
time1 = etime(clock,t0);
results.limit = [out.rho out.lo95 out.lndet out.up95];
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 2 % use Pace and Barry, 1998 spline interpolation
t0 = clock;
out = lndetint(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == -1 % the user fed down a detval matrix
time1 = 0;
% check to see if this is right
if detval == 0
error('far: wrgon lndet input argument');
end;
[n1,n2] = size(detval);
if n2 ~= 2
error('far: wrong sized lndet input argument');
elseif n1 == 1
error('far: wrong sized lndet input argument');
end;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -