📄 far_g.m
字号:
if metflag == 0 % update rho using numerical integration
e0 = y;
ed = Wy;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
rho = draw_rho(detval,epe0,eped,epe0d,n,1,rho,a1,a2);
end;
if (iter > nomit)
ssave(iter-nomit,1) = sige;
psave(iter-nomit,1) = rho;
if mm~= 0
rsave(iter-nomit,1) = rval;
end;
end; % end of if > nomit
iter = iter+1;
waitbar(iter/ndraw);
end; % end of sampling loop
close(hwait);
time3 = etime(clock,time3);
% compute posterior means and log marginal likelihood for return arguments
rho = mean(psave);
e0 = y;
ed = Wy;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
e = (e0 - rho*ed);
yhat = y - e;
sige = (1/(n-1))*(e0-rho*ed)'*(e0-rho*ed);
mlike = far_marginal(detval,e0,ed,epe0,eped,epe0d,n,1,a1,a2);
results.y = y;
results.nobs = n;
results.nvar = 1;
results.meth = 'far_g';
results.pdraw = psave;
results.sdraw = ssave;
results.vmean = vmean;
results.yhat = yhat;
results.resid = e;
results.tflag = 'plevel';
results.lflag = ldetflag;
results.dflag = metflag;
results.nobs = n;
results.ndraw = ndraw;
results.nomit = nomit;
results.y = y;
results.nvar = 1;
results.mlike = mlike;
results.sige = sige;
results.rho = rho;
results.lndet = detval;
results.acc = acc_rate;
results.novi = novi_flag;
if mm~= 0
results.rdraw = rsave;
results.m = mm;
results.k = kk;
else
results.r = rval;
results.rdraw = 0;
end;
results.time = etime(clock,timet);
results.time1 = time1;
results.time2 = time2;
results.time3 = time3;
results.lndet = detval;
results.rmax = rmax;
results.rmin = rmin;
otherwise
error('far_g: unrecognized prior.novi_flag value on input');
% we should never get here
end; % end of homoscedastic vs. heteroscedastic vs. log-marginal options
% =========================================================================
% support functions below
% =========================================================================
function rho = draw_rho(detval,epe0,eped,epe0d,n,k,rho,a1,a2)
% update rho via univariate numerical integration
nmk = (n-k)/2;
nrho = length(detval(:,1));
iota = ones(nrho,1);
z = epe0*iota - 2*detval(:,1)*epe0d + detval(:,1).*detval(:,1)*eped;
den = detval(:,2) - nmk*log(z);
bprior = beta_prior(detval(:,1),a1,a2);
den = den + log(bprior);
n = length(den);
y = detval(:,1);
adj = max(den);
den = den - adj;
x = exp(den);
% trapezoid rule
isum = sum((y(2:n,1) + y(1:n-1,1)).*(x(2:n,1) - x(1:n-1,1))/2);
z = abs(x/isum);
den = cumsum(z);
rnd = unif_rnd(1,0,1)*sum(z);
ind = find(den <= rnd);
idraw = max(ind);
if (idraw > 0 & idraw < nrho)
rho = detval(idraw,1);
end;
function cout = c_far(rho,y,sige,W,detval,vi,a1,a2);
% PURPOSE: evaluate the conditional distribution of rho given sige
% spatial autoregressive model using sparse matrix algorithms
% ---------------------------------------------------
% USAGE:cout = c_far(rho,y,sige,W,detval,a1,a2)
% where: rho = spatial autoregressive parameter
% y = dependent variable vector
% W = spatial weight matrix
% detval = an (ngrid,2) matrix of values for det(I-rho*W)
% over a grid of rho values
% detval(:,1) = determinant values
% detval(:,2) = associated rho values
% sige = sige value
% a1 = (optional) prior parameter for rho
% a2 = (optional) prior parameter for rho
% ---------------------------------------------------
% RETURNS: a conditional used in Metropolis-Hastings sampling
% NOTE: called only by far_g
% --------------------------------------------------
gsize = detval(2,1) - detval(1,1);
% Note these are actually log detvalues
i1 = find(detval(:,1) <= rho + gsize);
i2 = find(detval(:,1) <= rho - gsize);
i1 = max(i1);
i2 = max(i2);
index = round((i1+i2)/2);
if isempty(index)
index = 1;
end;
detm = detval(index,2);
n = length(y);
e = (speye(n) - rho*sparse(W))*y ;
ev = e.*sqrt(vi);
epe = (ev'*ev)/(2*sige);
bprior = beta_prior(detval(:,1),a1,a2);
epe = log(epe) + log(bprior);
cout = detm - (n/2)*epe;
function [nu,d0,rval,mm,kk,rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,novi_flag,cc,metflag,a1,a2] = far_parse(prior)
% PURPOSE: parses input arguments for far, far_g models
% ---------------------------------------------------
% USAGE: [nu,d0,rval,mm,kk,rho,sige,rmin,rmax,detval, ...
% ldetflag,eflag,mflag,order,iter,novi_flag,c,T,prior_beta,cc,metflag],a1,a2,switch_flag =
% far_parse(prior,k)
% where info contains the structure variable with inputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% set defaults
eflag = 0; % default to not computing eigenvalues
ldetflag = 1; % default to 1999 Pace and Barry MC determinant approx
mflag = 1; % default to compute log marginal likelihood
order = 50; % there are parameters used by the MC det approx
iter = 30; % defaults based on Pace and Barry recommendation
rmin = -1; % use -1,1 rho interval as default
rmax = 1;
detval = 0; % just a flag
rho = 0.5;
sige = 1.0;
rval = 4;
mm = 0;
kk = 0;
nu = 0;
d0 = 0;
a1 = 1.01;
a2 = 1.01;
cc = 0.2;
novi_flag = 0; % do vi-estimates
metflag = 0; % use integration instead of M-H sampling for rho
fields = fieldnames(prior);
nf = length(fields);
if nf > 0
for i=1:nf
if strcmp(fields{i},'nu')
nu = prior.nu;
elseif strcmp(fields{i},'d0')
d0 = prior.d0;
elseif strcmp(fields{i},'rval')
rval = prior.rval;
elseif strcmp(fields{i},'dflag')
metflag = prior.dflag;
elseif strcmp(fields{i},'a1')
a1 = prior.a1;
elseif strcmp(fields{i},'a2')
a2 = prior.a2;
elseif strcmp(fields{i},'m')
mm = prior.m;
kk = prior.k;
rval = gamm_rnd(1,1,mm,kk); % initial value for rval
elseif strcmp(fields{i},'rmin')
rmin = prior.rmin; eflag = 0;
elseif strcmp(fields{i},'rmax')
rmax = prior.rmax; eflag = 0;
elseif strcmp(fields{i},'lndet')
detval = prior.lndet;
ldetflag = -1;
eflag = 0;
rmin = detval(1,1);
nr = length(detval);
rmax = detval(nr,1);
elseif strcmp(fields{i},'lflag')
tst = prior.lflag;
if tst == 0,
ldetflag = 0;
elseif tst == 1,
ldetflag = 1;
elseif tst == 2,
ldetflag = 2;
else
error('far_g: unrecognizable lflag value on input');
end;
elseif strcmp(fields{i},'order')
order = prior.order;
elseif strcmp(fields{i},'iter')
iter = prior.iter;
elseif strcmp(fields{i},'novi')
novi_flag = prior.novi;
elseif strcmp(fields{i},'dflag')
metflag = prior.dflag;
elseif strcmp(fields{i},'eig')
eflag = prior.eig;
elseif strcmp(fields{i},'mlog')
mlog = prior.mlog;
end;
end;
else, % the user has input a blank info structure
% so we use the defaults
end;
function [rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,n);
% PURPOSE: compute the eigenvalues for the weight matrix
% ---------------------------------------------------
% USAGE: [rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,W)
% where eflag is an input flag, W is the weight matrix
% rmin,rmax may be used as default outputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
if eflag == 1
t0 = clock;
opt.tol = 1e-3; opt.disp = 0;
lambda = eigs(sparse(W),speye(n),1,'SR',opt);
rmin = 1/lambda;
rmax = 1;
time2 = etime(clock,t0);
else
time2 = 0;
end;
function [detval,time1] = far_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% PURPOSE: compute the log determinant |I_n - rho*W|
% using the user-selected (or default) method
% ---------------------------------------------------
% USAGE: detval = far_lndet(lflag,W,rmin,rmax)
% where eflag,rmin,rmax,W contains input flags
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% do lndet approximation calculations if needed
if ldetflag == 0 % no approximation
t0 = clock;
out = lndetfull(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 1 % use Pace and Barry, 1999 MC approximation
t0 = clock;
out = lndetmc(order,iter,W,rmin,rmax);
time1 = etime(clock,t0);
results.limit = [out.rho out.lo95 out.lndet out.up95];
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 2 % use Pace and Barry, 1998 spline interpolation
t0 = clock;
out = lndetint(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == -1 % the user fed down a detval matrix
time1 = 0;
% check to see if this is right
if detval == 0
error('far_g: wrgon lndet input argument');
end;
[n1,n2] = size(detval);
if n2 ~= 2
error('far_g: wrong sized lndet input argument');
elseif n1 == 1
error('far_g: wrong sized lndet input argument');
end;
end;
function out = far_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,a1,a2)
% PURPOSE: returns a vector of the log-marginal over a grid of rho-values
% -------------------------------------------------------------------------
% USAGE: out = far_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,a1,a2)
% where: detval = an ngrid x 2 matrix with rho-values and lndet values
% e0 = y;
% ed = Wy;
% epe0 = e0'*e0;
% eped = ed'*ed;
% epe0d = ed'*e0;
% nobs = # of observations
% nvar = # of explanatory variables
% a1 = parameter for beta prior on rho
% a2 = parameter for beta prior on rho
% -------------------------------------------------------------------------
% RETURNS: out = a structure variable
% out = log marginal, a vector the length of detval
% -------------------------------------------------------------------------
% written by:
% James P. LeSage, 7/2003
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
n = length(detval);
nmk = (nobs-nvar)/2;
bprior = beta_prior(detval(:,1),a1,a2);
C = log(bprior) + gammaln(nmk) - nmk*log(2*pi);
iota = ones(n,1);
z = epe0*iota - 2*detval(:,1)*epe0d + detval(:,1).*detval(:,1)*eped;
den = detval(:,2) - nmk*log(z);
den = real(den);
out = C + den;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -