📄 far_g.m
字号:
function results = far_g(y,W,ndraw,nomit,prior)
% PURPOSE: Bayesian estimates for the 1st-order Spatial autoregressive model
% y = rho*W*y + e, e = N(0,sige*V),
% V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)
% sige = gamma(nu,d0)
% rho = Uniform(rmin,rmax), or rho = beta(a1,a2);
%----------------------------------------------------------------
% USAGE: result = far_g(y,W,ndraw,nomit,prior)
% where: y = nobs x 1 independent variable vector (mean = 0)
% W = nobs x nobs 1st-order contiguity matrix (standardized)
% ndraw = # of draws
% nomit = # of initial draws omitted for burn-in
% prior = a structure variable for prior information input
% prior.novi = 1 turns off sampling for vi, producing homoscedastic model. default = 0
% prior.nu, = informative Gamma(nu,d0) prior on sige
% prior.d0 default: nu=0,d0=0 (diffuse prior)
% prior.a1 = parameter for beta(a1,a2) prior on rho (default = 1.01)
% prior.a2 = (default = 1.01) see: 'help beta_prior'
% prior.rval, = r prior hyperparameter, default=4
% prior.m, = informative Gamma(m,k) prior on r
% prior.k, = informative Gamma(m,k) prior on r
% prior.eig = 0 for default rmin = -1,rmax = +1, 1 for eigenvalue calculation of these
% prior.rmin, = (optional) min value of rho to use in sampling
% prior.rmax, = (optional) max value of rho to use in sampling
% prior.lflag = 0 for full lndet computation (default = 1, fastest)
% = 1 for MC approximation (fast for very large problems)
% = 2 for Spline approximation (medium speed)
% prior.dflag = 0 for numerical integration, 1 for Metropolis-Hastings (default = 0)
% prior.order = order to use with info.lflag = 1 option (default = 50)
% prior.iter = iters to use with info.lflag = 1 option (default = 30)
% prior.lndet = a matrix returned by sar, far_g, sar_g, etc.
% containing log-determinant information to save time
%---------------------------------------------------------------
% RETURNS: a structure:
% results.meth = 'far_g'
% results.pdraw = rho draws (ndraw-nomit x 1)
% results.sdraw = sige draws (ndraw-nomit x 1)
% results.vmean = mean of vi draws (nobs x 1)
% results.rdraw = r-value draws (ndraw-nomit x 1)
% results.nu = prior nu-value for sige (if prior input)
% results.d0 = prior d0-value for sige (if prior input)
% results.a1 = a1 parameter for beta prior on rho from input, or default value
% results.a2 = a2 parameter for beta prior on rho from input, or default value
% results.r = value of hyperparameter r (if input)
% results.m = m prior parameter (if input)
% results.k = k prior parameter (if input)
% results.nobs = # of observations
% results.ndraw = # of draws
% results.nomit = # of initial draws omitted
% results.y = actual observations
% results.yhat = mean of posterior for y-predicted (nobs x 1)
% results.time = total time taken
% results.time1 = time for log determinant calcluation
% results.time2 = time for eigenvalue calculation
% results.time3 = time taken for sampling
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.tflag = 'plevel' (default) for printing p-levels
% = 'tstat' for printing bogus t-statistics
% results.lflag = lflag from input
% results.dflag = dflag value from input (or default value used)
% results.iter = info.iter option from input
% results.order = info.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95] intervals
% (for the case of lflag = 1)
% results.lndet = a matrix containing log-determinant information
% (for use in later function calls to save time)
% results.acc = acceptance rate for M-H sampling
% results.mlike = log marginal likelihood (a vector ranging over
% rho values that can be integrated for model comparison)
%----------------------------------------------------------------
% NOTES: - use either improper prior.rval
% or informative Gamma prior.m, prior.k, not both of them
% - if you use lflag = 1 or 2, prior.rmin will be set = -1
% prior.rmax will be set = 1
% - for n < 1000 you should use lflag = 0 to get exact results
%----------------------------------------------------------------
% SEE ALSO: (far_gd, far_gd2, far_gd3, demos) prt, plt
% --------------------------------------------------------------
% REFERENCES: James P. LeSage, `Bayesian Estimation of Spatial Autoregressive
% Models', International Regional Science Review, 1997
% Volume 20, number 1\&2, pp. 113-129.
% For lndet information see: Ronald Barry and R. Kelley Pace,
% "A Monte Carlo Estimator of the Log Determinant of Large Sparse Matrices",
% Linear Algebra and its Applications", Volume 289, Number 1-3, 1999, pp. 41-54.
% and: R. Kelley Pace and Ronald P. Barry "Simulating Mixed Regressive
% Spatially autoregressive Estimators",
% Computational Statistics, 1998, Vol. 13, pp. 397-418.
%----------------------------------------------------------------
% written by:
% James P. LeSage, last updated 8/2003
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
% NOTE: much of the speed for large problems comes from:
% the use of methods pioneered by Pace and Barry.
% R. Kelley Pace was kind enough to provide functions
% lndetmc, and lndetint from his spatial statistics toolbox
% for which I'm very grateful.
timet = clock; % start the timer
if (nargin < 4 | nargin > 5)
error('far_g: Wrong # of input arguments');
end;
if nargin == 4
prior.lflag = 1;
end;
[n n2] = size(W);
if n ~= n2 % a non-square spatial weight matrix
error('far_g: Wrong size 1st-order contiguity matrix');
end;
[tst junk] = size(y);
if tst ~= n % y-vector length doesn't match W-matrix
error('far_g: Wrong size y vector on input');
end;
if junk ~= 1 % user didn't enter a column vector
error('far_g: Wrong size y vector on input');
end;
time1 = 0;
time2 = 0;
time3 = 0;
[nu,d0,rval,mm,kk,rho,sige,rmin,rmax,detval,ldetflag, ...
eflag,order,iter,novi_flag,cc,metflag,a1,a2] = far_parse(prior);
results.order = order;
results.iter = iter;
V = ones(n,1); in = ones(n,1); % initial value for V
ys = y.*sqrt(V);
vi = in;
psave = zeros(ndraw-nomit,1); % allocate storage for results
ssave = zeros(ndraw-nomit,1);
vmean = zeros(n,1);
yhat = zeros(n,1);
acc_rate = zeros(ndraw,1);
if mm~= 0 % storage for draws on rvalue
rsave = zeros(ndraw-nomit,1);
end;
[rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,n);
[detval,time1] = far_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
iter = 1;
time3 = clock; % start timing the sampler
% =====================================================
% The sampler starts here
% =====================================================
Wy = sparse(W)*y;
acc = 0;
cc = 0.1;
switch novi_flag
case{0} % we do heteroscedastic model
hwait = waitbar(0,'MCMC sampling far model ...');
while (iter <= ndraw); % start sampling;
% update sige;
nu1 = n + nu;
Wys = Wy.*sqrt(V);
e = ys - rho*Wys;
d1 = d0 + e'*e;
chi = chis_rnd(1,nu1);
t2 = chi/d1;
sige = 1/t2;
% update vi
e = y - rho*Wy;
chiv = chis_rnd(n,rval+1);
vi = ((e.*e./sige) + in*rval)./chiv;
V = in./vi;
ys = y.*sqrt(V);
% update rval
if mm ~= 0
rval = gamm_rnd(1,1,mm,kk);
end;
if metflag == 1
% metropolis step to get rho update
rhox = c_far(rho,y,sige,W,detval,in,a1,a2);
accept = 0;
rho2 = rho + cc*randn(1,1);
while accept == 0
if ((rho2 > rmin) & (rho2 < rmax));
accept = 1;
else
rho2 = rho + cc*randn(1,1);
end;
end;
rhoy = c_far(rho2,y,sige,W,detval,in,a1,a2);
ru = unif_rnd(1,0,1);
if ((rhoy - rhox) > exp(1)),
p = 1;
else,
ratio = exp(rhoy-rhox);
p = min(1,ratio);
end;
if (ru < p)
rho = rho2;
acc = acc + 1;
end;
rtmp(iter,1) = rho;
acc_rate(iter,1) = acc/iter;
% update cc based on std of rho draws
if acc_rate(iter,1) < 0.4
cc = cc/1.1;
end;
if acc_rate(iter,1) > 0.6
cc = cc*1.1;
end;
end; % end of if metflag == 1
if metflag == 0 % update rho using numerical integration
e0 = ys;
ed = Wys;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
rho = draw_rho(detval,epe0,eped,epe0d,n,1,rho,a1,a2);
end;
if (iter > nomit)
ssave(iter-nomit,1) = sige;
psave(iter-nomit,1) = rho;
vmean = vmean + vi;
if mm~= 0
rsave(iter-nomit,1) = rval;
end;
end; % end of if > nomit
iter = iter+1;
waitbar(iter/ndraw);
end; % end of sampling loop
close(hwait);
time3 = etime(clock,time3);
% compute posterior means and log marginal likelihood for return arguments
rho = mean(psave);
sigm = mean(ssave);
vmean = vmean/(ndraw-nomit);
V = in./vmean;
ys = sqrt(V).*y;
Wys = sqrt(V).*Wy;
e0 = ys;
ed = Wys;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
e = (e0-rho*ed);
yhat = y - e;
sige = (1/n)*(e0-rho*ed)'*(e0-rho*ed);
mlike = far_marginal(detval,e0,ed,epe0,eped,epe0d,n,1,a1,a2);
results.y = y;
results.nobs = n;
results.nvar = 1;
results.meth = 'far_g';
results.pdraw = psave;
results.sdraw = ssave;
results.vmean = vmean;
results.yhat = yhat;
results.resid = e;
results.tflag = 'plevel';
results.lflag = ldetflag;
results.dflag = metflag;
results.nobs = n;
results.ndraw = ndraw;
results.nomit = nomit;
results.y = y;
results.nvar = 1;
results.mlike = mlike;
results.sige = sige;
results.rho = rho;
results.lndet = detval;
results.acc = acc_rate;
results.novi = novi_flag;
if mm~= 0
results.rdraw = rsave;
results.m = mm;
results.k = kk;
else
results.r = rval;
results.rdraw = 0;
end;
results.time = etime(clock,timet);
results.time1 = time1;
results.time2 = time2;
results.time3 = time3;
results.lndet = detval;
results.rmax = rmax;
results.rmin = rmin;
case{1} % we do homoscedastic model
hwait = waitbar(0,'MCMC sampling far model ...');
while (iter <= ndraw); % start sampling;
% update sige;
nu1 = n + nu;
e = y - rho*Wy;
d1 = d0 + e'*e;
chi = chis_rnd(1,nu1);
t2 = chi/d1;
sige = 1/t2;
if metflag == 1
% metropolis step to get rho update
rhox = c_far(rho,y,sige,W,detval,in,a1,a2);
accept = 0;
rho2 = rho + cc*randn(1,1);
while accept == 0
if ((rho2 > rmin) & (rho2 < rmax));
accept = 1;
else
rho2 = rho + cc*randn(1,1);
end;
end;
rhoy = c_far(rho2,y,sige,W,detval,in,a1,a2);
ru = unif_rnd(1,0,1);
if ((rhoy - rhox) > exp(1)),
p = 1;
else,
ratio = exp(rhoy-rhox);
p = min(1,ratio);
end;
if (ru < p)
rho = rho2;
acc = acc + 1;
end;
rtmp(iter,1) = rho;
acc_rate(iter,1) = acc/iter;
% update cc based on std of rho draws
if acc_rate(iter,1) < 0.4
cc = cc/1.1;
end;
if acc_rate(iter,1) > 0.6
cc = cc*1.1;
end;
end; % end of if metflag == 1
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -