📄 mess_like.m
字号:
function out = mess_like(parm,ys,xs,ymat);
% PURPOSE: evaluate the likelihood for the hessian function
% MESS model
% ---------------------------------------------------
% USAGE: out = mess_lik2(parm,y,x,ymat)
% where: parm = vector of parameters
% [bhat : k-vector of bhat
% alpha : matrix exponential alpha spatial parameter
% sige] : sigma estimate
% y = dependent variable vector
% x = explanatory variables matrix
% ymat = spatially transformed y from mess()
% ---------------------------------------------------
% RETURNS: a log likelihood function value
% NOTE: called only by mess
% --------------------------------------------------
% SEE ALSO: mess, mess_d
% ---------------------------------------------------
% written by: James P. LeSage 1/2000
% University of Toledo
% Department of Economics
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
n = length(ys);
npar = length(parm);
k = npar - 2;
beta = parm(1:k,1);
alpha = parm(k+1,1);
sige = parm(npar,1);
[junk nq] = size(ymat);
W = (1./gamma(1:nq))';
v = ones(nq,1);
for i=2:nq;
v(i,1) = alpha.^(i-1);
end;
Sy = ymat*diag(W)*v;
e = Sy - xs*beta;
epe = e'*e;
out = (n/2)*log(pi) + (n/2)*log(sige) + epe/(2*sige);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -