📄 mess_g.m
字号:
function results = mess_g(y,x,options,ndraw,nomit,prior,start)% PURPOSE: Bayesian estimates of the matrix exponential spatial model (mess)% [based on a given value of rho and # of neighbors]% S*y = X*b + e, with xflag == 0, or:% S*y = [i X D*X]*b + e, with xflag == 1% e = N(0,sige*In), % S = e^alpha*D% B = N(c,T), % 1/sige = Gamma(nu,d0), % alpha = Uniform(amin,amax) or alpha = N(a,B) % D = a weight matrix constructed from neighbors N_i: using% D = sum rho^i N_i / sum rho^i, i=1,...,#neighbors% This function uses:% a single value of rho from options.rho % a single value for #neighbors from options.neigh%-------------------------------------------------------------% USAGE: results = mess_g(y,x,options,ndraw,nomit,prior,start)% where: y = dependent variable vector (nobs x 1)% x = independent variables matrix (nobs x nvar)% options = a structure variable with:% options.latt = lattitude coordinates (nx1 vector)% options.long = longitude coordinates (nx1 vector)% options.neigh = # of neighbors to use in constructing D (default = 5)% options.xflag = 0 for S*y = X*b + e, model (default)% = 1 for S*y = [i X D*X]*b + e, model% options.rho = value of rho to use in discounting % (0 < rho < 1), (default 1)% options.nflag = 0 for neighbors using 1st and 2nd order Delauney (default)% = 1 for neighbors using 3rd and 4th order Delauney% for large nobs, and large # neighbors, used nflag = 1% options.q = # of terms to use in the matrix exponential% expansion (default = 7)% ndraw = # of draws% nomit = # of initial draws omitted for burn-in % prior = a structure variable with:% prior.beta = prior means for beta, c above (default 0)% (nvar x 1 vector, D*X terms have diffuse prior =0)% priov.bcov = prior beta covariance , T above (default 1e+12)% (nvar x nvar matrix, D*X terms have diffuse prior)% prior.alpha = prior mean for alpha a above (default uniform)% prior.rcov = prior alpha variance, B above % prior.nu = informative Gamma(nu,d0) prior on sige% prior.d0 = default: nu=0,d0=0 (diffuse prior)% prior.m, = informative Gamma(m,k) prior on r% prior.k, = informative Gamma(m,k) prior on r% prior.amin = (optional) min alpha used in sampling % (default = max like alpha - 3*std(alpha))% prior.amax = (optional) max alpha used in sampling % (default = max like alpha + 3*std(alpha))% prior.lflag = 0 (default for marginal likelihood calculations)% = 1 for no marginal likelihood (faster)% start = (optional) structure containing starting values: % defaults: beta=ones(k,1),sige=1,rho=0.5, V=ones(n,1)% start.b = beta starting values (nvar x 1)% start.a = alpha starting value (scalar)% start.sig = sige starting value (scalar)%-------------------------------------------------------------% RETURNS: a structure:% results.meth = 'mess_g'% results.bdraw = bhat draws (ndraw-nomit x nvar)% results.bmean = mean of bhat draws% results.bstd = std of bhat draws% results.adraw = alpha draws (ndraw-nomit x 1)% results.amean = mean of alpha draws% results.astd = std of alpha draws% results.sdraw = sige draws (ndraw-nomit x 1)% results.smean = mean of sige draws% results.lmean = marginal likelihood based on mean of draws% results.bprior = b prior means, prior.beta from input% results.bpstd = b prior std deviations sqrt(diag(prior.bcov))% results.nobs = # of observations% results.nvar = # of variables in x-matrix (plus D*X matrix)% results.ndraw = # of draws% results.nomit = # of initial draws omitted% results.y = y-vector from input (nobs x 1)% results.yhat = mean of posterior predicted (nobs x 1)% results.nu = nu prior parameter% results.d0 = d0 prior parameter% results.stime = time for sampling% results.time = total time taken % results.ntime = time taken for mesh over rho and alpha values% results.accept = acceptance rate % results.amax = amax: max like alpha + 2*std(alpha) (or user input)% results.amin = amin: max like alpha - 2*std(alpha) (or user input) % results.rho = rho from user input% results.tflag = 'plevel' (default) for printing p-levels% = 'tstat' for printing bogus t-statistics % results.palpha = prior for alpha (from input)% results.acov = prior variance for alpha (from input)% results.pflag = 1, if a normal(a,B) prior for alpha, 0 otherwise% results.xflag = model flag from input% results.neigh = # of terms in flexible D-matrix specification% (from input or default)% results.q = q value from input (or default)% --------------------------------------------------------------% NOTES: 1) if the model includes a constant term% it should be entered as the first column in the x-matrix% that is input to the function% 1) mess_g1 produces a posterior distribution for # neighbors% 2) mess_g2 produces a posterior distribution for the hyperparameter rho% 3) mess_g3 produces posteriors for both rho and # of neighbors% --------------------------------------------------------------% SEE ALSO: mess_gd, messv_g, prt, mess% --------------------------------------------------------------% REFERENCES: LeSage and Pace (2000) "Bayesian Estimation of the% Matrix Exponential Spatial Specification", unpublished manuscript%----------------------------------------------------------------% written by:% James P. LeSage, 1/2000% Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jlesage@spatial-econometrics.comtimet = clock;% error checking on inputs[n junk] = size(y);results.y = y;[n1 k] = size(x);if n1 ~= nerror('mess_g: x-matrix contains wrong # of observations');end;% set defaultsq = 7;xflag = 0;nflag = 0;rho = 1;neigh = 5;aflag = 0;llflag = 0;pflag = 0; % flag for the presence or absent of a prior on alphamm = 0; % set defaultsnu = 0; % default diffuse prior for siged0 = 0;sig0 = 1; % default starting values for sigeastart = -1; % default starting value for alphac = zeros(k,1); % diffuse prior for betaT = eye(k)*1e+12;palpha = -1;S = 1e+12;lflag = 0; % default to do marginal likelihood calculationsif nargin == 7 if ~isstruct(start) error('mess_g: must supply starting values in a structure'); end; % parse starting values entered by the user fields = fieldnames(start); nf = length(fields); for i=1:nf if strcmp(fields{i},'b') b0 = start.b; [n1 n2] = size(b0); % error checking on user inputs if n1 ~= k error('mess_g: starting beta values are wrong'); elseif n2 ~= 1 error('mess_g: starting beta values are wrong'); end; elseif strcmp(fields{i},'sig') sig0 = start.sig; [n1 n2] = size(sig0); % error checking on user inputs if n1 ~= 1 error('mess_g: starting sige value is wrong'); elseif n2 ~= 1 error('mess_g: starting sige value is wrong'); end; elseif strcmp(fields{i},'a') astart = start.a; [n1 n2] = size(astart); % error checking on user inputs if n1 ~= 1 error('mess_g: starting alpha value is wrong'); elseif n2 ~= 1 error('mess_g: starting alpha value is wrong'); end; end; end; % end of for loop% parse options structure if ~isstruct(options) error('mess_g: must supply option values in a structure'); end; fields = fieldnames(options); nf = length(fields); for i=1:nf if strcmp(fields{i},'xflag') xflag = options.xflag; elseif strcmp(fields{i},'rho') rho = options.rho; elseif strcmp(fields{i},'q') q = options.q; elseif strcmp(fields{i},'neigh') neigh = options.neigh; elseif strcmp(fields{i},'latt') latt = options.latt; llflag = llflag + 1; elseif strcmp(fields{i},'long') long = options.long; llflag = llflag + 1; elseif strcmp(fields{i},'nflag') nflag = options.nflag; end; end; % end of for loop% parse prior structure variable inputs if ~isstruct(prior) error('mess_g: must supply the prior as a structure variable'); end;fields = fieldnames(prior);nf = length(fields);for i=1:nf if strcmp(fields{i},'beta') c = prior.beta; elseif strcmp(fields{i},'bcov') T = prior.bcov; elseif strcmp(fields{i},'alpha') palpha = prior.alpha; pflag = 1; elseif strcmp(fields{i},'acov') S = prior.acov; elseif strcmp(fields{i},'nu') nu = prior.nu; elseif strcmp(fields{i},'d0') d0 = prior.d0; elseif strcmp(fields{i},'lflag') lflag = prior.lflag; end;end;elseif nargin == 6 % we supply default starting values fields = fieldnames(prior); nf = length(fields); for i=1:nf if strcmp(fields{i},'beta') c = prior.beta; elseif strcmp(fields{i},'bcov') T = prior.bcov; elseif strcmp(fields{i},'alpha') palpha = prior.alpha; pflag = 1; elseif strcmp(fields{i},'acov') S = prior.acov; elseif strcmp(fields{i},'nu') nu = prior.nu; elseif strcmp(fields{i},'d0') d0 = prior.d0; elseif strcmp(fields{i},'rval') rval = prior.rval; elseif strcmp(fields{i},'lflag') lflag = prior.lflag; end; end; % parse options if ~isstruct(options) error('mess_g: must supply option values in a structure'); end; fields = fieldnames(options); nf = length(fields); for i=1:nf if strcmp(fields{i},'xflag') xflag = options.xflag; elseif strcmp(fields{i},'rho') rho = options.rho; elseif strcmp(fields{i},'q') q = options.q; elseif strcmp(fields{i},'neigh') neigh = options.neigh; elseif strcmp(fields{i},'latt') latt = options.latt; llflag = llflag + 1; elseif strcmp(fields{i},'long') long = options.long; llflag = llflag + 1; elseif strcmp(fields{i},'nflag') nflag = options.nflag; end; end; % end of for loopelseif nargin == 5 % we supply all defaults % parse options structure if ~isstruct(options) error('mess_g: must supply option values in a structure'); end; fields = fieldnames(options); nf = length(fields); for i=1:nf if strcmp(fields{i},'xflag') xflag = options.xflag; elseif strcmp(fields{i},'rho') rho = options.rho; elseif strcmp(fields{i},'q') q = options.q; elseif strcmp(fields{i},'neigh') neigh = options.neigh; elseif strcmp(fields{i},'latt') latt = options.latt; llflag = llflag + 1; elseif strcmp(fields{i},'long') long = options.long; llflag = llflag + 1; elseif strcmp(fields{i},'nflag') nflag = options.nflag; end; end; % end of for loopelseerror('Wrong # of arguments to mess_g');end; % error checking on prior information inputs[checkk,junk] = size(c);if checkk ~= kerror('mess_g: prior means are wrong');elseif junk ~= 1error('mess_g: prior means are wrong');end;[checkk junk] = size(T);if checkk ~= kerror('mess_g: prior bcov is wrong');elseif junk ~= kerror('mess_g: prior bcov is wrong');end;[checkk junk] = size(palpha);if checkk ~= 1error('mess_g: prior alpha is wrong');elseif junk ~= 1error('mess_g: prior alpha is wrong');end;[checkk junk] = size(S);if checkk ~= 1error('mess_g: prior acov is wrong');elseif junk ~= 1error('mess_g: prior acov is wrong');end;% make sure the user input latt, long or we really bombif llflag ~= 2;error('mess_g: no lattitude-longitude coordinates input');end;switch xflag % switch on x transformation case{0} % case where x variables are not transformed% ====== initializations% compute this stuff once to save timeTI = inv(T);TIc = TI*c;% ========= do up front grid over rho, alpha valuest1 = clock; % time this operation% find index into nearest neighborsif nflag == 0nnlist = find_nn(latt,long,neigh);elseif nflag == 1nnlist = find_nn2(latt,long,neigh);elseerror('mess_g1: bad nflag option');end;% check for empty nnlist columnschk = find(nnlist == 0);if length(chk) > 0; if nflag == 1 % no saving the user here error('mess_g3: trying too many neighbors, some do not exist'); else % we save the user here nnlist = find_nn2(latt,long,neigh); end;end;tmp = rho.^(0:neigh-1);tmp = tmp/sum(tmp);% construct and save Sywy = y;Y = y(:,ones(1,q));for i=2:q;wy = wy(nnlist)*tmp';Y(:,i) = wy;end;% end of up front stuff with Sy saved in Symatgtime = etime(clock,t1);% initializations and starting values for the sampleralpha = astart;cc=0.2; % initial metropolis valuecnta = 0; % counter for acceptance rate for alphaiter = 1;in = ones(n,1);sige = sig0;% storage for draws bsave = zeros(ndraw-nomit,k); asave = zeros(ndraw-nomit,1); ssave = zeros(ndraw-nomit,1); lsave = 0; rtmp = zeros(nomit,1);hwait = waitbar(0,'MCMC sampling ...');t0 = clock; iter = 1; while (iter <= ndraw); % start sampling; [junk nq] = size(Y); nq1 = nq-1; v = ones(nq,1); for i=2:nq; v(i,1) = alpha.^(i-1); end; W = (1./[1 cumprod(1:nq1)]); Sy = Y*diag(W)*v; % update beta AI = inv(x'*x + sige*TI); b = x'*Sy + sige*TIc; b0 = AI*b; bhat = norm_rnd(sige*AI) + b0; % update sige nu1 = n + 2*nu; e = (Sy - x*bhat); d1 = 2*d0 + e'*e; chi = chis_rnd(1,nu1); sige = d1/chi; % metropolis step to get alpha update if pflag == 0 alphax = c_mess(alpha,y,x,Y,bhat,sige); elseif pflag == 1 alphax = c_mess(alpha,y,x,Y,bhat,sige,palpha,S); end; accept = 0; alpha2 = alpha + cc*randn(1,1); while accept == 0 if alpha2 <= 0 accept = 1; else alpha2 = alpha + cc*randn(1,1); cnta = cnta+1; % counts accept rate for alpha end; end; if pflag == 0 alphay = c_mess(alpha2,y,x,Y,bhat,sige); elseif pflag == 1 alphay = c_mess(alpha2,y,x,Y,bhat,sige,palpha,S); end; ru = unif_rnd(1,0,1); if ((alphay - alphax) > exp(1)), p = 1; else, ratio = exp(alphay-alphax); p = min(1,ratio); end; if (ru < p)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -