⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mess_g.m

📁 计量工具箱
💻 M
📖 第 1 页 / 共 2 页
字号:
function results = mess_g(y,x,options,ndraw,nomit,prior,start)% PURPOSE: Bayesian estimates of the matrix exponential spatial model (mess)% [based on a given value of rho and # of neighbors]% S*y = X*b + e,           with xflag == 0, or:% S*y = [i X D*X]*b + e,   with xflag == 1%          e = N(0,sige*In), %          S = e^alpha*D%          B = N(c,T), %          1/sige = Gamma(nu,d0), %          alpha = Uniform(amin,amax) or alpha = N(a,B) % D = a weight matrix constructed from neighbors N_i: using% D = sum rho^i N_i / sum rho^i, i=1,...,#neighbors% This function uses:%  a single value of rho from options.rho %  a single value for #neighbors from options.neigh%-------------------------------------------------------------% USAGE: results = mess_g(y,x,options,ndraw,nomit,prior,start)% where: y = dependent variable vector (nobs x 1)%        x = independent variables matrix (nobs x nvar)%  options = a structure variable with:%  options.latt  = lattitude coordinates (nx1 vector)%  options.long  = longitude coordinates (nx1 vector)%  options.neigh = # of neighbors to use in constructing D (default = 5)%  options.xflag = 0 for S*y = X*b + e,         model (default)%                = 1 for S*y = [i X D*X]*b + e, model%  options.rho   = value of rho to use in discounting %                  (0 < rho < 1), (default 1)%  options.nflag = 0 for neighbors using 1st and 2nd order Delauney (default)%                = 1 for neighbors using 3rd and 4th order Delauney%                  for large nobs, and large # neighbors, used nflag = 1%  options.q     = # of terms to use in the matrix exponential%                  expansion (default = 7)%    ndraw = # of draws%    nomit = # of initial draws omitted for burn-in            %    prior = a structure variable with:%            prior.beta  = prior means for beta,   c above (default 0)%                          (nvar x 1 vector, D*X terms have diffuse prior =0)%            priov.bcov  = prior beta covariance , T above (default 1e+12)%                          (nvar x nvar matrix, D*X terms have diffuse prior)%            prior.alpha = prior mean for alpha    a above (default uniform)%            prior.rcov  = prior alpha variance,   B above %            prior.nu    = informative Gamma(nu,d0) prior on sige%            prior.d0    = default: nu=0,d0=0 (diffuse prior)%            prior.m,    = informative Gamma(m,k) prior on r%            prior.k,    = informative Gamma(m,k) prior on r%            prior.amin  = (optional) min alpha used in sampling %                          (default = max like alpha - 3*std(alpha))%            prior.amax  = (optional) max alpha used in sampling %                          (default = max like alpha + 3*std(alpha))%            prior.lflag = 0 (default for marginal likelihood calculations)%                        = 1 for no marginal likelihood (faster)%    start = (optional) structure containing starting values: %            defaults: beta=ones(k,1),sige=1,rho=0.5, V=ones(n,1)%            start.b   = beta starting values (nvar x 1)%            start.a   = alpha starting value (scalar)%            start.sig = sige starting value  (scalar)%-------------------------------------------------------------% RETURNS:  a structure:%          results.meth   = 'mess_g'%          results.bdraw  = bhat draws (ndraw-nomit x nvar)%          results.bmean  = mean of bhat draws%          results.bstd   = std of bhat draws%          results.adraw  = alpha draws (ndraw-nomit x 1)%          results.amean  = mean of alpha draws%          results.astd   = std of alpha draws%          results.sdraw  = sige draws (ndraw-nomit x 1)%          results.smean  = mean of sige draws%          results.lmean  = marginal likelihood based on mean of draws%          results.bprior = b prior means, prior.beta from input%          results.bpstd  = b prior std deviations sqrt(diag(prior.bcov))%          results.nobs   = # of observations%          results.nvar   = # of variables in x-matrix (plus D*X matrix)%          results.ndraw  = # of draws%          results.nomit  = # of initial draws omitted%          results.y      = y-vector from input (nobs x 1)%          results.yhat   = mean of posterior predicted (nobs x 1)%          results.nu     = nu prior parameter%          results.d0     = d0 prior parameter%          results.stime  = time for sampling%          results.time   = total time taken  %          results.ntime  = time taken for mesh over rho and alpha values%          results.accept = acceptance rate %          results.amax   = amax: max like alpha + 2*std(alpha) (or user input)%          results.amin   = amin: max like alpha - 2*std(alpha) (or user input)      %          results.rho    = rho from user input%          results.tflag  = 'plevel' (default) for printing p-levels%                         = 'tstat' for printing bogus t-statistics %          results.palpha = prior for alpha (from input)%          results.acov   = prior variance for alpha (from input)%          results.pflag  = 1, if a normal(a,B) prior for alpha, 0 otherwise%          results.xflag  = model flag from input%          results.neigh  = # of terms in flexible D-matrix specification%                          (from input or default)%          results.q      = q value from input (or default)% --------------------------------------------------------------% NOTES: 1) if the model includes a constant term% it should be entered as the first column in the x-matrix% that is input to the function% 1) mess_g1 produces a posterior distribution for # neighbors% 2) mess_g2 produces a posterior distribution for the hyperparameter rho% 3) mess_g3 produces posteriors for both rho and # of neighbors% --------------------------------------------------------------% SEE ALSO: mess_gd, messv_g, prt, mess% --------------------------------------------------------------% REFERENCES: LeSage and Pace (2000) "Bayesian Estimation of the% Matrix Exponential Spatial Specification", unpublished manuscript%----------------------------------------------------------------% written by:% James P. LeSage, 1/2000% Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jlesage@spatial-econometrics.comtimet = clock;% error checking on inputs[n junk] = size(y);results.y = y;[n1 k] = size(x);if n1 ~= nerror('mess_g: x-matrix contains wrong # of observations');end;% set defaultsq = 7;xflag = 0;nflag = 0;rho = 1;neigh = 5;aflag = 0;llflag = 0;pflag = 0; % flag for the presence or absent of a prior on alphamm = 0;    % set defaultsnu = 0;    % default diffuse prior for siged0 = 0;sig0 = 1;         % default starting values for sigeastart = -1;      % default starting value for alphac = zeros(k,1);   % diffuse prior for betaT = eye(k)*1e+12;palpha = -1;S = 1e+12;lflag = 0; % default to do marginal likelihood calculationsif nargin == 7    if ~isstruct(start)        error('mess_g: must supply starting values in a structure');    end; % parse starting values entered by the user fields = fieldnames(start); nf = length(fields); for i=1:nf    if strcmp(fields{i},'b')        b0 = start.b;         [n1 n2] = size(b0); % error checking on user inputs       if n1 ~= k        error('mess_g: starting beta values are wrong');       elseif n2 ~= 1        error('mess_g: starting beta values are wrong');       end;    elseif strcmp(fields{i},'sig')        sig0 = start.sig;       [n1 n2] = size(sig0); % error checking on user inputs       if n1 ~= 1        error('mess_g: starting sige value is wrong');       elseif n2 ~= 1        error('mess_g: starting sige value is wrong');       end;    elseif strcmp(fields{i},'a')        astart = start.a;       [n1 n2] = size(astart); % error checking on user inputs       if n1 ~= 1        error('mess_g: starting alpha value is wrong');       elseif n2 ~= 1        error('mess_g: starting alpha value is wrong');       end;    end; end; % end of for loop% parse options structure    if ~isstruct(options)        error('mess_g: must supply option values in a structure');    end; fields = fieldnames(options); nf = length(fields); for i=1:nf    if strcmp(fields{i},'xflag')       xflag = options.xflag;    elseif strcmp(fields{i},'rho')        rho = options.rho;    elseif strcmp(fields{i},'q')       q = options.q;     elseif strcmp(fields{i},'neigh')       neigh = options.neigh;     elseif strcmp(fields{i},'latt')        latt = options.latt; llflag = llflag + 1;     elseif strcmp(fields{i},'long')        long = options.long; llflag = llflag + 1;    elseif strcmp(fields{i},'nflag')        nflag = options.nflag;     end; end; % end of for loop% parse prior structure variable inputs            if ~isstruct(prior)    error('mess_g: must supply the prior as a structure variable');    end;fields = fieldnames(prior);nf = length(fields);for i=1:nf    if strcmp(fields{i},'beta')        c = prior.beta;    elseif strcmp(fields{i},'bcov')        T = prior.bcov;    elseif strcmp(fields{i},'alpha')        palpha = prior.alpha; pflag = 1;    elseif strcmp(fields{i},'acov')        S = prior.acov;            elseif strcmp(fields{i},'nu')        nu = prior.nu;    elseif strcmp(fields{i},'d0')        d0 = prior.d0;    elseif strcmp(fields{i},'lflag')       lflag = prior.lflag;     end;end;elseif nargin == 6   % we supply default starting values fields = fieldnames(prior); nf = length(fields); for i=1:nf    if strcmp(fields{i},'beta')        c = prior.beta;    elseif strcmp(fields{i},'bcov')        T = prior.bcov;    elseif strcmp(fields{i},'alpha')        palpha = prior.alpha; pflag = 1;    elseif strcmp(fields{i},'acov')        S = prior.acov;             elseif strcmp(fields{i},'nu')        nu = prior.nu;    elseif strcmp(fields{i},'d0')        d0 = prior.d0;    elseif strcmp(fields{i},'rval')       rval = prior.rval;     elseif strcmp(fields{i},'lflag')       lflag = prior.lflag;     end; end;  % parse options     if ~isstruct(options)        error('mess_g: must supply option values in a structure');    end; fields = fieldnames(options); nf = length(fields); for i=1:nf    if strcmp(fields{i},'xflag')       xflag = options.xflag;    elseif strcmp(fields{i},'rho')        rho = options.rho;    elseif strcmp(fields{i},'q')       q = options.q;     elseif strcmp(fields{i},'neigh')       neigh = options.neigh;     elseif strcmp(fields{i},'latt')        latt = options.latt; llflag = llflag + 1;     elseif strcmp(fields{i},'long')        long = options.long; llflag = llflag + 1;    elseif strcmp(fields{i},'nflag')        nflag = options.nflag;     end; end; % end of for loopelseif nargin == 5   % we supply all defaults   % parse options structure    if ~isstruct(options)        error('mess_g: must supply option values in a structure');    end; fields = fieldnames(options); nf = length(fields); for i=1:nf    if strcmp(fields{i},'xflag')       xflag = options.xflag;    elseif strcmp(fields{i},'rho')        rho = options.rho;    elseif strcmp(fields{i},'q')       q = options.q;     elseif strcmp(fields{i},'neigh')       neigh = options.neigh;     elseif strcmp(fields{i},'latt')        latt = options.latt; llflag = llflag + 1;     elseif strcmp(fields{i},'long')        long = options.long; llflag = llflag + 1;    elseif strcmp(fields{i},'nflag')        nflag = options.nflag;     end; end; % end of for loopelseerror('Wrong # of arguments to mess_g');end;      % error checking on prior information inputs[checkk,junk] = size(c);if checkk ~= kerror('mess_g: prior means are wrong');elseif junk ~= 1error('mess_g: prior means are wrong');end;[checkk junk] = size(T);if checkk ~= kerror('mess_g: prior bcov is wrong');elseif junk ~= kerror('mess_g: prior bcov is wrong');end;[checkk junk] = size(palpha);if checkk ~= 1error('mess_g: prior alpha is wrong');elseif junk ~= 1error('mess_g: prior alpha is wrong');end;[checkk junk] = size(S);if checkk ~= 1error('mess_g: prior acov is wrong');elseif junk ~= 1error('mess_g: prior acov is wrong');end;% make sure the user input latt, long or we really bombif llflag ~= 2;error('mess_g: no lattitude-longitude coordinates input');end;switch xflag % switch on x transformation      case{0} % case where x variables are not transformed% ====== initializations% compute this stuff once to save timeTI = inv(T);TIc = TI*c;% ========= do up front grid over rho, alpha valuest1 = clock;   % time this operation% find index into nearest neighborsif nflag == 0nnlist = find_nn(latt,long,neigh);elseif nflag == 1nnlist = find_nn2(latt,long,neigh);elseerror('mess_g1: bad nflag option');end;% check for empty nnlist columnschk = find(nnlist == 0);if length(chk) > 0;  if nflag == 1 % no saving the user here error('mess_g3: trying too many neighbors, some do not exist'); else % we save the user here nnlist = find_nn2(latt,long,neigh); end;end;tmp = rho.^(0:neigh-1);tmp = tmp/sum(tmp);% construct and save Sywy = y;Y = y(:,ones(1,q));for i=2:q;wy = wy(nnlist)*tmp';Y(:,i) = wy;end;% end of up front stuff with Sy saved in Symatgtime = etime(clock,t1);% initializations and starting values for the sampleralpha = astart;cc=0.2;   % initial metropolis valuecnta = 0; % counter for acceptance rate for alphaiter = 1;in = ones(n,1);sige = sig0;% storage for draws          bsave = zeros(ndraw-nomit,k);          asave = zeros(ndraw-nomit,1);          ssave = zeros(ndraw-nomit,1);           lsave = 0;          rtmp = zeros(nomit,1);hwait = waitbar(0,'MCMC sampling ...');t0 = clock;                  iter = 1;          while (iter <= ndraw); % start sampling;          [junk nq] = size(Y);          nq1 = nq-1;          v = ones(nq,1);          for i=2:nq;          v(i,1) = alpha.^(i-1);          end;          W = (1./[1 cumprod(1:nq1)]);          Sy = Y*diag(W)*v;          % update beta             AI = inv(x'*x + sige*TI);              b = x'*Sy + sige*TIc;          b0 = AI*b;          bhat = norm_rnd(sige*AI) + b0;                     % update sige          nu1 = n + 2*nu;           e = (Sy - x*bhat);          d1 = 2*d0 + e'*e;          chi = chis_rnd(1,nu1);          sige = d1/chi;                                 % metropolis step to get alpha update          if pflag == 0          alphax = c_mess(alpha,y,x,Y,bhat,sige);           elseif pflag == 1          alphax = c_mess(alpha,y,x,Y,bhat,sige,palpha,S);           end;                    accept = 0;           alpha2 = alpha + cc*randn(1,1);          while accept == 0            if alpha2 <= 0            accept = 1;             else           alpha2 = alpha + cc*randn(1,1);           cnta = cnta+1; % counts accept rate for alpha           end;           end;           if pflag == 0           alphay = c_mess(alpha2,y,x,Y,bhat,sige);          elseif pflag == 1           alphay = c_mess(alpha2,y,x,Y,bhat,sige,palpha,S);          end;                    ru = unif_rnd(1,0,1);          if ((alphay - alphax) > exp(1)),          p = 1;          else,                    ratio = exp(alphay-alphax);          p = min(1,ratio);          end;              if (ru < p)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -