📄 messv_g3.m
字号:
function results = messv_g3(y,x,options,ndraw,nomit,prior,start)% PURPOSE: Bayesian estimates of the matrix exponential spatial model (mess)% % [samples values of rho and #neighbors to produce a posterior distribution% for these hyperparameters in the problem]% S*y = X*b + e, with xflag == 0, or:% S*y = [i X D*X]*b + e, with xflag == 1% e = N(0,sige*V), V = diag(v1,...,vn)% S = e^alpha*D% r/vi = ID chi(r)/r, r = Gamma(m,k)% B = N(c,T), % 1/sige = Gamma(nu,d0), % alpha = N(a,B), (default: diffuse prior) % D = a weight matrix constructed from neighbors using:% D = sum rho^i N_i / sum rho^i, i=1,...,#neighbors% using a grid of rho values from options.rmin to options.rmax% and a grid of values options.nmin to options.nmax over the # of neighbors, i% where i = # neighbors, N_i a matrix with ith nearest neighbors%-------------------------------------------------------------% USAGE: results = mess_g3(y,x,options,ndraw,nomit,prior,start)% where: y = dependent variable vector (nobs x 1)% x = independent variables matrix (nobs x nvar)% options = a structure variable with:% options.latt = lattitude coordinates (nx1 vector)% options.long = longitude coordinates (nx1 vector)% options.mmin = minimum # of neighbors to search over (default = 4)% options.mmax = maximum # of neighbors to search over (default = 10)% options.rmin = minimum value of rho to use (0 < rho < 1), (default 0.5) % options.rmax = maximum value of rho to use in discounting (default 1)% options.xflag = 0 for S*y = X*b + e, model (default)% = 1 for S*y = [i X D*X]*b + e, model% options.nflag = 0 for neighbors using 1st and 2nd order Delauney (default)% = 1 for neighbors using 3rd and 4th order Delauney% for large nobs, and large # neighbors, used nflag = 1% options.q = # of terms to use in the matrix exponential% expansion (default = 7)% ndraw = # of draws% nomit = # of initial draws omitted for burn-in % prior = a structure variable with:% prior.beta = prior means for beta, c above (default 0)% (nvar x 1 vector, D*X terms have diffuse prior =0)% priov.bcov = prior beta covariance , T above (default 1e+12)% (nvar x nvar matrix, D*X terms have diffuse prior)% prior.alpha = prior mean for alpha a above (default uniform)% prior.rcov = prior alpha variance, B above % prior.nu = informative Gamma(nu,d0) prior on sige% prior.d0 = default: nu=0,d0=0 (diffuse prior)% prior.rval = r prior hyperparameter, default=4% prior.m, = informative Gamma(m,k) prior on r% prior.k, = informative Gamma(m,k) prior on r% prior.lflag = 0 (default for marginal likelihood calculations)% = 1 for no marginal likelihood (faster)% start = (optional) structure containing starting values: % defaults: beta=ones(k,1),sige=1,rho=0.5, V=ones(n,1)% start.b = beta starting values (nvar x 1)% start.a = alpha starting value (scalar)% start.sig = sige starting value (scalar)%-------------------------------------------------------------% RETURNS: a structure:% results.meth = 'messv_g3'% results.bdraw = bhat draws (ndraw-nomit x nvar)% results.bmean = mean of bhat draws% results.bstd = std of bhat draws% results.adraw = alpha draws (ndraw-nomit x 1)% results.amean = mean of alpha draws% results.astd = std of alpha draws% results.sdraw = sige draws (ndraw-nomit x 1)% results.smean = mean of sige draws% results.lmean = marginal likelihood based on mean of draws% results.rmean = posterior mean of rho% results.rstd = posterior std of rho% results.rdraw = draws for rho% results.mmean = posterior mean of m, the # of neighbors% results.mstd = posterior std of m, the # of neighbors% results.mdraw = draws for # of neighbors% results.vmean = posterior mean of vi draws% results.bprior = b prior means, prior.beta from input% results.bpstd = b prior std deviations sqrt(diag(prior.bcov))% results.nobs = # of observations% results.nvar = # of variables in x-matrix (plus D*X matrix)% results.ndraw = # of draws% results.nomit = # of initial draws omitted% results.y = y-vector from input (nobs x 1)% results.r = value of hyperparameter r (if input)% results.rvdraw = r draws (ndraw-nomit x 1) (if m,k input)% results.yhat = mean of posterior predicted (nobs x 1)% results.nu = nu prior parameter% results.d0 = d0 prior parameter% results.stime = time for sampling% results.time = total time taken % results.ntime = time taken for setup mesh over rho,m values% results.accept = acceptance rate for alpha <= 0% results.rmax = rmax: default (or user input)% results.rmin = rmin: default (or user input) % results.mmax = mmax: default (or user input)% results.mmin = mmin: default (or user input) % results.nflag = nflag value from input (or default) % results.tflag = 'plevel' (default) for printing p-levels% = 'tstat' for printing bogus t-statistics % results.palpha = prior for alpha (from input)% results.acov = prior variance for alpha (from input)% results.pflag = 1, if a normal(a,B) prior for alpha, 0 otherwise% results.xflag = model flag from input% results.q = q value from input (or default)% --------------------------------------------------------------% NOTES: if the model includes a constant term% it should be entered as the first column in the x-matrix% that is input to the function% 1) mess_g1 produces a posterior distribution for # neighbors% 2) mess_g2 produces a posterior distribution for the hyperparameter rho% 3) mess_g3 produces posteriors for both rho and # of neighbors% --------------------------------------------------------------% SEE ALSO: mess_g3d, mess_g, mess_g3, messv_g, prt, c_mess, mess% --------------------------------------------------------------% REFERENCES: LeSage and Pace (2000) "Bayesian Estimation of the% Matrix Exponential Spatial Specification", unpublished manuscript%----------------------------------------------------------------% written by:% James P. LeSage, 1/2000% Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jlesage@spatial-econometrics.comtimet = clock;% error checking on inputs[n junk] = size(y);results.y = y;[n1 k] = size(x);if n1 ~= nerror('messv_g3: x-matrix contains wrong # of observations');end;% set defaultsq = 7;xflag = 0;rmin = 0.5;rmax = 1.0;rval = 4;mmin = 4;mmax = 10;neigh = 0;nflag = 0;llflag = 0;pflag = 0; % flag for the presence or absent of a prior on alphamm = 0; % set defaultsnu = 0; % default diffuse prior for siged0 = 0;sig0 = 1; % default starting values for sigeastart = -1; % default starting value for alphac = zeros(k,1); % diffuse prior for betaT = eye(k)*1e+12;palpha = -1;S = 1e+12;lflag = 0; % default to do marginal likelihood calculationsif nargin == 7 if ~isstruct(start) error('messv_g3: must supply starting values in a structure'); end; % parse starting values entered by the user fields = fieldnames(start); nf = length(fields); for i=1:nf if strcmp(fields{i},'b') b0 = start.b; [n1 n2] = size(b0); % error checking on user inputs if n1 ~= k error('messv_g3: starting beta values are wrong'); elseif n2 ~= 1 error('messv_g3: starting beta values are wrong'); end; elseif strcmp(fields{i},'sig') sig0 = start.sig; [n1 n2] = size(sig0); % error checking on user inputs if n1 ~= 1 error('messv_g3: starting sige value is wrong'); elseif n2 ~= 1 error('messv_g3: starting sige value is wrong'); end; elseif strcmp(fields{i},'a') astart = start.a; [n1 n2] = size(astart); % error checking on user inputs if n1 ~= 1 error('messv_g3: starting alpha value is wrong'); elseif n2 ~= 1 error('messv_g3: starting alpha value is wrong'); end; end; end; % end of for loop% parse options structure if ~isstruct(options) error('messv_g3: must supply option values in a structure'); end; fields = fieldnames(options); nf = length(fields); for i=1:nf if strcmp(fields{i},'xflag') xflag = options.xflag; elseif strcmp(fields{i},'rmin') rmin = options.rmin; elseif strcmp(fields{i},'rmax') rmax = options.rmax; elseif strcmp(fields{i},'mmin') mmin = options.mmin; elseif strcmp(fields{i},'mmax') mmax = options.mmax; elseif strcmp(fields{i},'nflag') nflag = options.nflag; elseif strcmp(fields{i},'q') q = options.q; elseif strcmp(fields{i},'latt') latt = options.latt; llflag = llflag + 1; elseif strcmp(fields{i},'long') long = options.long; llflag = llflag + 1; end; end; % end of for loop% parse prior structure variable inputs if ~isstruct(prior) error('messv_g3: must supply the prior as a structure variable'); end;fields = fieldnames(prior);nf = length(fields);for i=1:nf if strcmp(fields{i},'beta') c = prior.beta; elseif strcmp(fields{i},'bcov') T = prior.bcov; elseif strcmp(fields{i},'alpha') palpha = prior.alpha; pflag = 1; elseif strcmp(fields{i},'acov') S = prior.acov; elseif strcmp(fields{i},'nu') nu = prior.nu; elseif strcmp(fields{i},'d0') d0 = prior.d0; elseif strcmp(fields{i},'lflag') lflag = prior.lflag; elseif strcmp(fields{i},'m') mm = prior.m; kk = prior.k; rval = gamm_rnd(1,1,mm,kk); % initial value for rval elseif strcmp(fields{i},'rval'); rval = prior.rval; end;end;elseif nargin == 6 % we supply default starting values fields = fieldnames(prior); nf = length(fields); for i=1:nf if strcmp(fields{i},'beta') c = prior.beta; elseif strcmp(fields{i},'bcov') T = prior.bcov; elseif strcmp(fields{i},'m') mm = prior.m; kk = prior.k; rval = gamm_rnd(1,1,mm,kk); % initial value for rval elseif strcmp(fields{i},'alpha') palpha = prior.alpha; pflag = 1; elseif strcmp(fields{i},'acov') S = prior.acov; elseif strcmp(fields{i},'nu') nu = prior.nu; elseif strcmp(fields{i},'d0') d0 = prior.d0; elseif strcmp(fields{i},'rval') rval = prior.rval; elseif strcmp(fields{i},'lflag') lflag = prior.lflag; elseif strcmp(fields{i},'nflag') nflag = options.nflag; end; end; % parse options if ~isstruct(options) error('messv_g3: must supply option values in a structure'); end; fields = fieldnames(options); nf = length(fields); for i=1:nf if strcmp(fields{i},'xflag') xflag = options.xflag; elseif strcmp(fields{i},'rmin') rmin = options.rmin; elseif strcmp(fields{i},'rmax') rmax = options.rmax; elseif strcmp(fields{i},'mmin') mmin = options.mmin; elseif strcmp(fields{i},'mmax') mmax = options.mmax; elseif strcmp(fields{i},'q') q = options.q; elseif strcmp(fields{i},'nflag') nflag = options.nflag; elseif strcmp(fields{i},'latt') latt = options.latt; llflag = llflag + 1; elseif strcmp(fields{i},'long') long = options.long; llflag = llflag + 1; end; end; % end of for loopelseif nargin == 5 % we supply all defaults % parse options structure if ~isstruct(options) error('messv_g3: must supply option values in a structure'); end; fields = fieldnames(options); nf = length(fields); for i=1:nf if strcmp(fields{i},'xflag') xflag = options.xflag; elseif strcmp(fields{i},'rmin') rmin = options.rmin; elseif strcmp(fields{i},'rmax') rmax = options.rmax; elseif strcmp(fields{i},'mmin') mmin = options.mmin; elseif strcmp(fields{i},'mmax') mmax = options.mmax; elseif strcmp(fields{i},'q') q = options.q; elseif strcmp(fields{i},'latt') latt = options.latt; llflag = llflag + 1; elseif strcmp(fields{i},'long') long = options.long; llflag = llflag + 1; elseif strcmp(fields{i},'nflag') nflag = options.nflag; end; end; % end of for loopelseerror('Wrong # of arguments to messv_g3');end; % error checking on prior information inputs[checkk,junk] = size(c);if checkk ~= kerror('messv_g3: prior means are wrong');elseif junk ~= 1error('messv_g3: prior means are wrong');end;[checkk junk] = size(T);if checkk ~= kerror('messv_g3: prior bcov is wrong');elseif junk ~= kerror('messv_g3: prior bcov is wrong');end;[checkk junk] = size(palpha);if checkk ~= 1error('messv_g3: prior alpha is wrong');elseif junk ~= 1error('messv_g3: prior alpha is wrong');end;[checkk junk] = size(S);if checkk ~= 1error('messv_g3: prior acov is wrong');elseif junk ~= 1error('messv_g: prior acov is wrong');end;% make sure the user input latt, long or we really bombif llflag ~= 2;error('messv_g3: no lattitude-longitude coordinates input');end;switch xflag % switch on x transformation case{0} % case where x variables are not transformed% ====== initializations% compute this stuff once to save timeTI = inv(T);TIc = TI*c;% ========= do up front grid over rho, alpha valuest1 = clock; % time this operationresults.rmin = rmin;results.rmax = rmax;results.mmin = mmin;results.mmax = mmax;rgrid = rmin:0.01:rmax;mgrid = mmin:1:mmax;nrho = length(rgrid);nneigh = length(mgrid);% storage for Y over the gridYmat = zeros(n,q,nrho,nneigh); % vectors of Sy for various alpha,rho values% find index into nearest neighborsif nflag == 0nnlistall = find_nn(latt,long,mmax);elseif nflag == 1nnlistall = find_nn(latt,long,mmax,3);elseerror('mess_g3: bad nflag option');end;% check for empty nnlist columnschk = find(nnlistall == 0);if length(chk) > 0; if nflag == 1 % no saving the user here error('mess_g3: trying too many neighbors, some do not exist'); else % we save the user here nnlistall = find_nn(latt,long,mmax,4); end;end;% do grid over rho, neigh valueshwait = waitbar(0,'computing grid over rho and neighbors ...');ngrid = nneigh*nrho;iter = 1;for kk=1:nneigh;neigh = mgrid(kk);nnlist = nnlistall(:,1:neigh);for jj=1:nrho;rho = rgrid(jj);tmp = rho.^(0:neigh-1);tmp = tmp/sum(tmp);% construct and save Ywy = y;Y = y(:,ones(1,q));for i=2:q;wy = wy(nnlist)*tmp';Y(:,i) = wy;end;% we can save Y for lookupYmat(:,:,jj,kk) = Y;% save rhormat(jj,1) = rho;end; % end of loop over alpha values mmat(kk,1) = neigh;iter = iter + nrho; waitbar(iter/ngrid); end; % end of loop over neighborsclose(hwait);% end of up front stuff with Sy saved in Symatgtime = etime(clock,t1);% initializations and starting values for the samplerrho = 1;alpha = astart;neigh = mmax;cc=0.2; % initial metropolis valuecnta = 0; % counter for acceptance rate for alpha
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -