⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mess_g1.m

📁 计量工具箱
💻 M
📖 第 1 页 / 共 3 页
字号:
function results = mess_g1(y,x,options,ndraw,nomit,prior,start)% PURPOSE: Bayesian estimates of the matrix exponential spatial model (mess)% % [samples values of neighbors to produce a posterior distribution]% S*y = X*b + e,           with xflag == 0, or:% S*y = [i X D*X]*b + e,   with xflag == 1%          e = N(0,sige*In), %          S = e^alpha*D%          B = N(c,T),            (default: diffuse)%          1/sige = Gamma(nu,d0), (default: diffuse)%          alpha =  N(a,B),       (default: diffuse) % D = a weight matrix constructed from neighbors N_i using:% D = sum rho^i N_i / sum rho^i, i=1,...,#neighbors% NOTE: mess_g()  uses fixed #neighbors, fixed rho %       mess_g1() estimates #neighbors, fixed rho%       mess_g2() uses fixed #neighbors, estimates rho%       mess_g3() estimates #neighbors and rho%-------------------------------------------------------------% USAGE: results = mess_g1(y,x,options,ndraw,nomit,prior,start)% where: y = dependent variable vector (nobs x 1)%        x = independent variables matrix (nobs x nvar)%  options = a structure variable with:%  options.latt  = lattitude coordinates (nx1 vector)%  options.long  = longitude coordinates (nx1 vector)%  options.rho = rho value to use in constructing D (0 < rho < 1), (default 1)%  options.xflag = 0 for S*y = X*b + e,         model (default)%                = 1 for S*y = [i X D*X]*b + e, model%  options.mmin  = minimum # neighbors to use (default = 4)                  %  options.mmax  = maximum # neighbors to use (default = 10)%  options.nflag = 0 for neighbors using 1st and 2nd order Delauney (default)%                = 1 for neighbors using 3rd and 4th order Delauney%                  for large nobs, and large # neighbors, used nflag = 1%  options.q     = # of terms to use in the matrix exponential%                  expansion (default = 7)%    ndraw = # of draws%    nomit = # of initial draws omitted for burn-in            %    prior = a structure variable with:%            prior.beta  = prior means for beta,   c above (default 0)%                          (nvar x 1 vector, D*X terms have diffuse prior =0)%            priov.bcov  = prior beta covariance , T above (default 1e+12)%                          (nvar x nvar matrix, D*X terms have diffuse prior)%            prior.alpha = prior mean for alpha    a above (default uniform)%            prior.rcov  = prior alpha variance,   B above %            prior.nu    = informative Gamma(nu,d0) prior on sige%            prior.d0    = default: nu=0,d0=0 (diffuse prior)%            prior.m,    = informative Gamma(m,k) prior on r%            prior.k,    = informative Gamma(m,k) prior on r%    start = (optional) structure containing starting values: %            defaults: beta=ones(k,1),sige=1,rho=0.5, V=ones(n,1)%            start.b   = beta starting values (nvar x 1)%            start.a   = alpha starting value (scalar)%            start.sig = sige starting value  (scalar)%-------------------------------------------------------------% RETURNS:  a structure:%          results.meth   = 'mess_g1'%          results.bdraw  = bhat draws (ndraw-nomit x nvar)%          results.bmean  = mean of bhat draws%          results.bstd   = std of bhat draws%          results.adraw  = alpha draws (ndraw-nomit x 1)%          results.amean  = mean of alpha draws%          results.astd   = std of alpha draws%          results.sdraw  = sige draws (ndraw-nomit x 1)%          results.smean  = mean of sige draws%          results.lmean  = marginal likelihood based on mean of draws%          results.mmean  = posterior mean of # neighbors%          results.mstd   = posterior std  of # neighbors%          results.mdraw  = draws for # neighbors%          results.bprior = b prior means, prior.beta from input%          results.bpstd  = b prior std deviations sqrt(diag(prior.bcov))%          results.nobs   = # of observations%          results.nvar   = # of variables in x-matrix (plus D*X matrix)%          results.ndraw  = # of draws%          results.nomit  = # of initial draws omitted%          results.y      = y-vector from input (nobs x 1)%          results.yhat   = mean of posterior predicted (nobs x 1)%          results.nu     = nu prior parameter%          results.d0     = d0 prior parameter%          results.stime  = time for sampling%          results.time   = total time taken  %          results.ntime  = time taken for mesh over rho and alpha values%          results.accept = acceptance rate %          results.mmax   = mmax: default (or user input)%          results.mmin   = mmin: default (or user input)        %          results.tflag  = 'plevel' (default) for printing p-levels%                         = 'tstat' for printing bogus t-statistics %          results.palpha = prior for alpha (from input)%          results.acov   = prior variance for alpha (from input)%          results.pflag  = 1, if a normal(a,B) prior for alpha, 0 otherwise%          results.xflag  = model flag from input%          results.rho    = rho value used (from input or default)%          results.q      = q value from input (or default)% --------------------------------------------------------------% NOTES: if the model includes a constant term% it should be entered as the first column in the x-matrix% that is input to the function% 1) mess_g1 produces a posterior distribution for # neighbors% 2) mess_g2 produces a posterior distribution for the hyperparameter rho% 3) mess_g3 produces posteriors for both rho and # of neighbors% --------------------------------------------------------------% SEE ALSO:  mess_g1d, mess_g, mess_g2, mess_g3, prt, mess% --------------------------------------------------------------% REFERENCES: LeSage and Pace (2000) "Bayesian Estimation of the% Matrix Exponential Spatial Specification", unpublished manuscript%----------------------------------------------------------------% written by:% James P. LeSage, 1/2000% Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jlesage@spatial-econometrics.comtimet = clock;% error checking on inputs[n junk] = size(y);results.y = y;[n1 k] = size(x);if n1 ~= nerror('mess_g1: x-matrix contains wrong # of observations');end;% set defaultsq = 7;xflag = 0;nflag = 0;mmin = 4;mmax = 10;rho = 1;nflag = 0;llflag = 0;pflag = 0; % flag for the presence or absent of a prior on alphamm = 0;    % set defaultsnu = 0;    % default diffuse prior for siged0 = 0;sig0 = 1;         % default starting values for sigeastart = -1;      % default starting value for alphac = zeros(k,1);   % diffuse prior for betaT = eye(k)*1e+12;palpha = -1;S = 1e+12;lflag = 0; % default to do marginal likelihood calculationsif nargin == 7    if ~isstruct(start)        error('mess_g1: must supply starting values in a structure');    end; % parse starting values entered by the user fields = fieldnames(start); nf = length(fields); for i=1:nf    if strcmp(fields{i},'b')        b0 = start.b;         [n1 n2] = size(b0); % error checking on user inputs       if n1 ~= k        error('mess_g1: starting beta values are wrong');       elseif n2 ~= 1        error('mess_g1: starting beta values are wrong');       end;    elseif strcmp(fields{i},'sig')        sig0 = start.sig;       [n1 n2] = size(sig0); % error checking on user inputs       if n1 ~= 1        error('mess_g1: starting sige value is wrong');       elseif n2 ~= 1        error('mess_g1: starting sige value is wrong');       end;    elseif strcmp(fields{i},'a')        astart = start.a;       [n1 n2] = size(astart); % error checking on user inputs       if n1 ~= 1        error('mess_g1: starting alpha value is wrong');       elseif n2 ~= 1        error('mess_g1: starting alpha value is wrong');       end;    end; end; % end of for loop% parse options structure    if ~isstruct(options)        error('mess_g1: must supply option values in a structure');    end; fields = fieldnames(options); nf = length(fields); for i=1:nf    if strcmp(fields{i},'xflag')       xflag = options.xflag;    elseif strcmp(fields{i},'mmin')        mmin = options.mmin;    elseif strcmp(fields{i},'mmax')        mmax = options.mmax;    elseif strcmp(fields{i},'q')       q = options.q;     elseif strcmp(fields{i},'rho')       rho = options.rho;     elseif strcmp(fields{i},'latt')        latt = options.latt; llflag = llflag + 1;     elseif strcmp(fields{i},'long')        long = options.long; llflag = llflag + 1;    elseif strcmp(fields{i},'nflag')        nflag = options.nflag;     end; end; % end of for loop% parse prior structure variable inputs            if ~isstruct(prior)    error('mess_g1: must supply the prior as a structure variable');    end;fields = fieldnames(prior);nf = length(fields);for i=1:nf    if strcmp(fields{i},'beta')        c = prior.beta;    elseif strcmp(fields{i},'bcov')        T = prior.bcov;    elseif strcmp(fields{i},'alpha')        palpha = prior.alpha; pflag = 1;    elseif strcmp(fields{i},'acov')        S = prior.acov;            elseif strcmp(fields{i},'nu')        nu = prior.nu;    elseif strcmp(fields{i},'d0')        d0 = prior.d0;    elseif strcmp(fields{i},'lflag')       lflag = prior.lflag;     end;end;elseif nargin == 6   % we supply default starting values fields = fieldnames(prior); nf = length(fields); for i=1:nf    if strcmp(fields{i},'beta')        c = prior.beta;    elseif strcmp(fields{i},'bcov')        T = prior.bcov;    elseif strcmp(fields{i},'alpha')        palpha = prior.alpha; pflag = 1;    elseif strcmp(fields{i},'acov')        S = prior.acov;             elseif strcmp(fields{i},'nu')        nu = prior.nu;    elseif strcmp(fields{i},'d0')        d0 = prior.d0;    elseif strcmp(fields{i},'rval')       rval = prior.rval;     elseif strcmp(fields{i},'lflag')       lflag = prior.lflag;     end; end;  % parse options     if ~isstruct(options)        error('mess_g1: must supply option values in a structure');    end; fields = fieldnames(options); nf = length(fields); for i=1:nf    if strcmp(fields{i},'xflag')       xflag = options.xflag;    elseif strcmp(fields{i},'mmin')        mmin = options.mmin;    elseif strcmp(fields{i},'mmax')        mmax = options.mmax;    elseif strcmp(fields{i},'q')       q = options.q;     elseif strcmp(fields{i},'rho')       rho = options.rho;     elseif strcmp(fields{i},'latt')        latt = options.latt; llflag = llflag + 1;     elseif strcmp(fields{i},'long')        long = options.long; llflag = llflag + 1;    elseif strcmp(fields{i},'nflag')        nflag = options.nflag;     end; end; % end of for loopelseif nargin == 5   % we supply all defaults   % parse options structure    if ~isstruct(options)        error('mess_g1: must supply option values in a structure');    end; fields = fieldnames(options); nf = length(fields); for i=1:nf    if strcmp(fields{i},'xflag')       xflag = options.xflag;    elseif strcmp(fields{i},'mmin')        mmin = options.mmin;    elseif strcmp(fields{i},'mmax')        mmax = options.mmax;    elseif strcmp(fields{i},'q')       q = options.q;     elseif strcmp(fields{i},'rho')       rho = options.rho;     elseif strcmp(fields{i},'latt')        latt = options.latt; llflag = llflag + 1;     elseif strcmp(fields{i},'long')        long = options.long; llflag = llflag + 1;    elseif strcmp(fields{i},'nflag')        nflag = options.nflag;     end; end; % end of for loopelseerror('Wrong # of arguments to mess_g1');end;      % error checking on prior information inputs[checkk,junk] = size(c);if checkk ~= kerror('mess_g1: prior means are wrong');elseif junk ~= 1error('mess_g1: prior means are wrong');end;[checkk junk] = size(T);if checkk ~= kerror('mess_g1: prior bcov is wrong');elseif junk ~= kerror('mess_g1: prior bcov is wrong');end;if pflag == 1[checkk junk] = size(palpha);if checkk ~= 1error('mess_g1: prior alpha is wrong');elseif junk ~= 1error('mess_g1: prior alpha is wrong');end;[checkk junk] = size(S);if checkk ~= 1error('mess_g1: prior acov is wrong');elseif junk ~= 1error('mess_g1: prior acov is wrong');end;end;% make sure the user input latt, long or we really bombif llflag ~= 2;error('mess_g1: no lattitude-longitude coordinates input');end;switch xflag % switch on x transformation      case{0} % case where x variables are not transformed% ====== initializations% compute this stuff once to save timeTI = inv(T);TIc = TI*c;% ========= do up front grid over neighborsresults.mmin = mmin;results.mmax = mmax;mgrid = mmin:1:mmax;nneigh = length(mgrid);t1 = clock;   % time this operation% storage for Y over the gridSymat = zeros(n,q,nneigh); % matrices Y for various neigh valuesmmat = zeros(nneigh,1);  % save rho values% find index into nearest neighborsif nflag == 0nnlistall = find_nn(latt,long,mmax);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -