📄 prt_sem.m
字号:
fprintf(fid,'\n');
fprintf(fid,'Bayesian spatial autoregressive Tobit model \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
fprintf(fid,'sigma^2 = %9.4f \n',sige);
if results.rdraw == 0
fprintf(fid,'r-value = %6d \n',results.r);
else
fprintf(fid,'mean of rdraws = %9.4f \n',mean(results.rdraw));
fprintf(fid,'gam(m,k) prior = %6d,%6d \n',results.m,results.k);
end;
fprintf(fid,'Nobs, Nvars = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'# censored values = %6d \n',results.nobsc);
fprintf(fid,'ndraws,nomit = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'time in secs = %9.4f \n',results.time);
fprintf(fid,'min and max rho = %9.4f,%9.4f \n',results.rmin,results.rmax);
fprintf(fid,'***************************************************************\n');
vstring = 'Variable';
bstring = 'Prior Mean';
tstring = 'Std Deviation';
tmp = [results.bmean results.bstd];
cnames = strvcat(bstring,tstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname(i+1,:));
end;
pin.fmt = '%16.6f';
pin.fid = fid;
pin.cnames = cnames;
pin.rnames = rnames;
mprint(tmp,pin);
fprintf(fid,'***************************************************************\n');
fprintf(fid,' Posterior Estimates \n');
if strcmp(results.tflag,'tstat')
% now print coefficient estimates, t-statistics and probabilities
tout = norm_prb(results.tstat); % find asymptotic z (normal) probabilities
tmp = [bout results.tstat tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Asymptot t-stat'; pstring = 'z-probability';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
else % use p-levels for Bayesian results
tmp = [bout bstd tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Std Deviation'; pstring = 'p-level';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
end;
return;
% <=================== end of sart_g case
case {'sarp_g','sarp_gc'} % <=================== Gibbs spatial autoregressive Probit model
nobs = results.nobs;
nvar = results.nvar;
% find posterior means
tmp1 = mean(results.bdraw);
pout = mean(results.pdraw);
bout = [tmp1'
pout];
sige = mean(results.sdraw);
tmp1 = std(results.bdraw);
tmp2 = std(results.pdraw);
bstd = [tmp1'
tmp2];
if strcmp(results.tflag,'tstat')
tstat = bout./bstd;
% find t-stat marginal probabilities
tout = tdis_prb(tstat,results.nobs);
results.tstat = bout./bstd; % trick for printing below
else % find plevels
draws = [results.bdraw results.pdraw];
for i=1:results.nvar+1;
if bout(i,1) > 0
cnt = find(draws(:,i) > 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
else
cnt = find(draws(:,i) < 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
end; % end of if - else
end; % end of for loop
end;
fprintf(fid,'\n');
fprintf(fid,'Bayesian spatial autoregressive Probit model \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
fprintf(fid,'sigma^2 = %9.4f \n',sige);
if results.rdraw == 0
fprintf(fid,'r-value = %6d \n',results.r);
else
fprintf(fid,'mean of rdraws = %9.4f \n',mean(results.rdraw));
fprintf(fid,'gam(m,k) prior = %6d,%6d \n',results.m,results.k);
end;
fprintf(fid,'Nobs, Nvars = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'# 0, 1 y-values = %6d,%6d \n',results.zip,nobs-results.zip);
fprintf(fid,'ndraws,nomit = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'time in secs = %9.4f \n',results.time);
fprintf(fid,'min and max rho = %9.4f,%9.4f \n',results.rmin,results.rmax);
fprintf(fid,'***************************************************************\n');
if strcmp(results.tflag,'tstat')
% now print coefficient estimates, t-statistics and probabilities
tout = norm_prb(results.tstat); % find asymptotic z (normal) probabilities
tmp = [bout results.tstat tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Asymptot t-stat'; pstring = 'z-probability';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
else % use p-levels for Bayesian results
tmp = [bout bstd tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Std Deviation'; pstring = 'p-level';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
end;
return;
% <=================== end of sarp_g case
case {'far'} % <=================== first-order autoregressive model
nvar = 1;
nobs = results.nobs;
% special handling of vnames
Vname = 'Variable';
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
fprintf(fid,'\n');
fprintf(fid,'First-order spatial autoregressive model Estimates \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
fprintf(fid,'R-squared = %9.4f \n',results.rsqr);
fprintf(fid,'sigma^2 = %9.4f \n',results.sige);
fprintf(fid,'log-likelihood = %16.8g \n',results.lik);
fprintf(fid,'Nobs, Nvars = %6d,%3d \n',results.nobs,results.nvar);
fprintf(fid,'# of iterations = %6d \n',results.iter);
% print timing information
fprintf(fid,'total time in secs = %9.4f \n',results.time);
fprintf(fid,'time for optimiz = %9.4f \n',results.time4);
if results.time1 ~= 0
fprintf(fid,'time for lndet = %9.4f \n',results.time1);
end;
if results.time2 ~= 0
fprintf(fid,'time for eigs = %9.4f \n',results.time2);
end;
if results.time3 ~= 0
fprintf(fid,'time for t-stat = %9.4f \n',results.time3);
end;
% print min and max rho used
fprintf(fid,'min and max rho = %8.4f,%8.4f \n',results.rmin,results.rmax);
if results.lflag == 0
fprintf(fid,'No lndet approximation used \n');
end;
% put in information regarding Pace and Barry approximations
if results.lflag == 1
fprintf(fid,'Pace and Barry, 1999 MC lndet approximation used \n');
fprintf(fid,'order for MC appr = %6d \n',results.order);
fprintf(fid,'iter for MC appr = %6d \n',results.liter);
end;
if results.lflag == 2
fprintf(fid,'Pace and Barry, 1998 spline lndet approximation used \n');
end;
fprintf(fid,'***************************************************************\n');
bout = results.rho;
% <=================== end of far case
case {'far_g','far_gc'} % <=================== Gibbs first-order autoregressive model
nobs = results.nobs;
nvar = 1;
% special handling of vnames
Vname = 'Variable';
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
% find posterior means
bout = mean(results.pdraw);
sige = mean(results.sdraw);
bstd = std(results.pdraw);
if strcmp(results.tflag,'tstat')
tstat = bout./bstd;
% find t-stat marginal probabilities
tout = tdis_prb(tstat,results.nobs);
results.tstat = bout./bstd; % trick for printing below
else % find plevels
draws = [results.pdraw];
if bout > 0
cnt = find(draws > 0);
tout = 1 - (length(cnt)/(results.ndraw-results.nomit));
else
cnt = find(draws < 0);
tout = 1 - (length(cnt)/(results.ndraw-results.nomit));
end; % end of if - else
end;
y = results.y;
e = y - results.yhat;
sigu = e'*e;
ym = y - mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % conventional r-squared
fprintf(fid,'\n');
fprintf(fid,'Bayesian First-order spatial autoregressive model \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
fprintf(fid,'R-squared = %9.4f \n',rsqr);
fprintf(fid,'sigma^2 = %9.4f \n',sige);
if results.rdraw ~= 0
fprintf(fid,'rmean = %9.4f \n',mean(results.rdraw));
else
fprintf(fid,'r-value = %6d \n',results.r);
end;
fprintf(fid,'Nobs, Nvars = %6d,%3d \n',results.nobs,nvar);
fprintf(fid,'ndraws,nomit = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'min and max rho = %9.4f,%9.4f \n',results.rmin,results.rmax);
% print timing information
fprintf(fid,'total time in secs = %9.4f \n',results.time);
if results.time1 ~= 0
fprintf(fid,'time for lndet = %9.4f \n',results.time1);
end;
if results.time2 ~= 0
fprintf(fid,'time for eigs = %9.4f \n',results.time2);
end;
if results.time3 ~= 0
fprintf(fid,'time for sampling = %9.4f \n',results.time3);
end;
if results.lflag == 0
fprintf(fid,'No lndet approximation used \n');
end;
% put in information regarding Pace and Barry approximations
if results.lflag == 1
fprintf(fid,'Pace and Barry, 1999 MC lndet approximation used \n');
fprintf(fid,'order for MC appr = %6d \n',results.order);
fprintf(fid,'iter for MC appr = %6d \n',results.liter);
end;
if results.lflag == 2
fprintf(fid,'Pace and Barry, 1998 spline lndet approximation used \n');
end;
fprintf(fid,'***************************************************************\n');
if strcmp(results.tflag,'tstat')
% now print coefficient estimates, t-statistics and probabilities
tout = norm_prb(results.tstat); % find asymptotic z (normal) probabilities
tmp = [bout results.tstat tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Asymptot t-stat'; pstring = 'z-probability';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
else % use p-levels for Bayesian results
tmp = [bout bstd tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Std Deviation'; pstring = 'p-level';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
end;
return;
% <=================== end of far_g case
case {'sac'} % <=================== general spatial model
nobs = results.nobs;
nvar = results.nvar;
% special handling of vnames
if ( nflag == 0) % no variable names supplied, make some up
Vname = 'Variable';
for i=1:nvar
tmp = ['variable ',num2str(i)];
Vname = strvcat(Vname,tmp);
end;
% add spatial rho, lambda parameter name
Vname = strvcat(Vname,'rho');
Vname = strvcat(Vname,'lambda');
elseif (nflag == 1) % the user supplied variable names
Vname = 'Variable';
[tst_n nsize] = size(vnames);
if tst_n ~= nvar+1
error('Wrong # of variable names in prt_sem -- check vnames argument');
end;
for i=1:nvar
Vname = strvcat(Vname,vnames(i+1,:));
end;
% add spatial rho, lambda parameter name
Vname = strvcat(Vname,'rho');
Vname = strvcat(Vname,'lambda');
end; % end of nflag issue
fprintf(fid,'\n');
fprintf(fid,'General Spatial Model Estimates \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
fprintf(fid,'R-squared = %9.4f \n',results.rsqr);
fprintf(fid,'Rbar-squared = %9.4f \n',results.rbar);
fprintf(fid,'sigma^2 = %9.4f \n',results.sige);
fprintf(fid,'log-likelihood = %16.8g \n',results.lik);
fprintf(fid,'Nobs, Nvars = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'# iterations = %6d \n',results.iter);
% print timing information
fprintf(fid,'total time in secs = %9.4f \n',results.time);
fprintf(fid,'time for optimiz = %9.4f \n',results.time4);
if results.time1 ~= 0
fprintf(fid,'time for lndet = %9.4f \n',results.time1);
end;
if results.time2 ~= 0
fprintf(fid,'time for eigs = %9.4f \n',results.time2);
end;
if results.time3 ~= 0
fprintf(fid,'time for t-stat = %9.4f \n',results.time3);
end;
fprintf(fid,'***************************************************************\n');
bout = [results.beta
results.rho
results.lam];
% <=================== end of sac case
case {'sac_g'} % <=================== Gibbs general spatial model
nobs = results.nobs;
nvar = results.nvar;
% handling of vnames
Vname = 'Variable';
for i=1:nvar
tmp = ['variable ',num2str(i)];
Vname = strvcat(Vname,tmp);
end;
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
% add spatial rho parameter name
Vname = strvcat(Vname,'lambda');
if (nflag == 1) % the user supplied variable names
Vname = 'Variable';
[tst_n nsize] = size(vnames);
if tst_n ~= nvar+1
fprintf(fid,'Wrong # of variable names in prt_sem -- check vnames argument \n');
fprintf(fid,'will use generic variable names \n');
nflag = 0;
else,
for i=1:nvar
Vname = strvcat(Vname,vnames(i+1,:));
end;
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
Vname = strvcat(Vname,'lambda');
end; % end of if-else
end; % end of nflag issue
% find posterior means
tmp1 = mean(results.bdraw);
pout = mean(results.pdraw);
lout = mean(results.ldraw);
bout = [tmp1'
pout
lout];
y = results.y;
sige = mean(results.sdraw);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -