⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 prt_sem.m

📁 计量工具箱
💻 M
📖 第 1 页 / 共 5 页
字号:
in.fid = fid;
mprint(tmp,in);
 else % use p-levels for Bayesian results
tmp = [bout bstd tout];  % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Std Deviation'; pstring = 'p-level';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
end;

return;

% <=================== end of sem_g case


case {'semip_g'} % <=================== regression model with individual effects
                %                      that follow a spatial AR model 

nobs = results.nobs;
nvar = results.nvar;

% handling of vnames
Vname = 'Variable';
 for i=1:nvar
    tmp = ['variable ',num2str(i)];
    Vname = strvcat(Vname,tmp);
 end;
% add spatial rho parameter name
    Vname = strvcat(Vname,'rho');

if (nflag == 1) % the user supplied variable names
Vname = 'Variable';
[tst_n nsize] = size(vnames);
 if tst_n ~= nvar+1
 fprintf(fid,'Wrong # of variable names in prt_sem -- check vnames argument \n');
 fprintf(fid,'will use generic variable names \n');
 nflag = 0;
 else,
 for i=1:nvar
    Vname = strvcat(Vname,vnames(i+1,:));
 end;
% add spatial rho parameter name
    Vname = strvcat(Vname,'rho');
 end; % end of if-else
end; % end of nflag issue

  
% find posterior means
tmp1 = mean(results.bdraw);
pout = mean(results.pdraw);
bout = [tmp1'
        pout];

y = results.y;
sige = mean(results.sdraw);
tmp1 = std(results.bdraw);
tmp2 = std(results.pdraw);
bstd = [tmp1'
        tmp2];
if strcmp(results.tflag,'tstat')
 tstat = bout./bstd;
 % find t-stat marginal probabilities
 tout = tdis_prb(tstat,results.nobs);
 results.tstat = bout./bstd; % trick for printing below
else % find plevels
 draws = [results.bdraw results.pdraw];
 for i=1:results.nvar+1;
 if bout(i,1) > 0
 cnt = find(draws(:,i) > 0);
 tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
 else
 cnt = find(draws(:,i) < 0);
 tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
 end; % end of if - else
 end; % end of for loop
end; 

e = y - results.yhat;
sigu = e'*e;
ym = y - mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % conventional r-squared

fprintf(fid,'\n');
fprintf(fid,'Bayesian probit model with individual spatial effects \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
%fprintf(fid,'R-squared          = %9.4f \n',rsqr);
fprintf(fid,'sigma^2            = %9.4f \n',sige);
if results.rdraw == 0
fprintf(fid,'r-value            = %6d   \n',results.r);
else
fprintf(fid,'mean of rdraws     = %9.4f \n',mean(results.rdraw));
fprintf(fid,'gam(m,k) prior     = %6d,%6d \n',results.m,results.k);
end;    
fprintf(fid,'Nobs, Nvars        = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'ndraws,nomit       = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'total time in secs = %9.4f   \n',results.time);
if results.time1 ~= 0
fprintf(fid,'time for eigs      = %9.4f \n',results.time1);
end;
if results.time2 ~= 0
fprintf(fid,'time for lndet     = %9.4f \n',results.time2);
end;
if results.time3 ~= 0
fprintf(fid,'time for sampling  = %9.4f \n',results.time3);
end;

if results.lflag == 0
fprintf(fid,'No lndet approximation used \n');
end;
% put in information regarding Pace and Barry approximations
if results.lflag == 1
fprintf(fid,'Pace and Barry, 1999 MC lndet approximation used \n');
fprintf(fid,'order for MC appr  = %6d  \n',results.order);
fprintf(fid,'iter  for MC appr  = %6d  \n',results.iter);
end;
if results.lflag == 2
fprintf(fid,'Pace and Barry, 1998 spline lndet approximation used \n');
end;

fprintf(fid,'min and max lambda = %9.4f,%9.4f \n',results.rmin,results.rmax);
fprintf(fid,'***************************************************************\n');

vstring = 'Variable';
bstring = 'Prior Mean';
tstring = 'Std Deviation';

tmp = [results.bmean results.bstd];
    

cnames = strvcat(bstring,tstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname(i+1,:));
end;

pin.fmt = '%16.6f';
pin.fid = fid;
pin.cnames = cnames;
pin.rnames = rnames;

mprint(tmp,pin);
fprintf(fid,'***************************************************************\n');
fprintf(fid,'      Posterior Estimates \n');

 if strcmp(results.tflag,'tstat')
% now print coefficient estimates, t-statistics and probabilities
tout = norm_prb(results.tstat); % find asymptotic z (normal) probabilities
      
tmp = [bout results.tstat tout];  % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Asymptot t-stat'; pstring = 'z-probability';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
 else % use p-levels for Bayesian results
tmp = [bout bstd tout];  % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Std Deviation'; pstring = 'p-level';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
end;

return;

% <=================== end of semip_g case

case {'semit_g'} % <=================== regression model with individual effects
                %                      that follow a spatial AR model 

nobs = results.nobs;
nvar = results.nvar;

% handling of vnames
Vname = 'Variable';
 for i=1:nvar
    tmp = ['variable ',num2str(i)];
    Vname = strvcat(Vname,tmp);
 end;
% add spatial rho parameter name
    Vname = strvcat(Vname,'rho');

if (nflag == 1) % the user supplied variable names
Vname = 'Variable';
[tst_n nsize] = size(vnames);
 if tst_n ~= nvar+1
 fprintf(fid,'Wrong # of variable names in prt_sem -- check vnames argument \n');
 fprintf(fid,'will use generic variable names \n');
 nflag = 0;
 else,
 for i=1:nvar
    Vname = strvcat(Vname,vnames(i+1,:));
 end;
% add spatial rho parameter name
    Vname = strvcat(Vname,'rho');
 end; % end of if-else
end; % end of nflag issue

  
% find posterior means
tmp1 = mean(results.bdraw);
pout = mean(results.pdraw);
bout = [tmp1'
        pout];

y = results.y;
sige = mean(results.sdraw);
tmp1 = std(results.bdraw);
tmp2 = std(results.pdraw);
bstd = [tmp1'
        tmp2];
if strcmp(results.tflag,'tstat')
 tstat = bout./bstd;
 % find t-stat marginal probabilities
 tout = tdis_prb(tstat,results.nobs);
 results.tstat = bout./bstd; % trick for printing below
else % find plevels
 draws = [results.bdraw results.pdraw];
 for i=1:results.nvar+1;
 if bout(i,1) > 0
 cnt = find(draws(:,i) > 0);
 tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
 else
 cnt = find(draws(:,i) < 0);
 tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
 end; % end of if - else
 end; % end of for loop
end; 

e = y - results.yhat;
sigu = e'*e;
ym = y - mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % conventional r-squared

fprintf(fid,'\n');
fprintf(fid,'Bayesian tobit model with individual spatial effects \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
%fprintf(fid,'R-squared          = %9.4f \n',rsqr);
fprintf(fid,'sigma^2            = %9.4f \n',sige);
if results.rdraw == 0
fprintf(fid,'r-value            = %6d   \n',results.r);
else
fprintf(fid,'mean of rdraws     = %9.4f \n',mean(results.rdraw));
fprintf(fid,'gam(m,k) prior     = %6d,%6d \n',results.m,results.k);
end;    
fprintf(fid,'Nobs, Nvars        = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'ndraws,nomit       = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'total time in secs = %9.4f   \n',results.time);
if results.time1 ~= 0
fprintf(fid,'time for eigs      = %9.4f \n',results.time1);
end;
if results.time2 ~= 0
fprintf(fid,'time for lndet     = %9.4f \n',results.time2);
end;
if results.time3 ~= 0
fprintf(fid,'time for sampling  = %9.4f \n',results.time3);
end;

if results.lflag == 0
fprintf(fid,'No lndet approximation used \n');
end;
% put in information regarding Pace and Barry approximations
if results.lflag == 1
fprintf(fid,'Pace and Barry, 1999 MC lndet approximation used \n');
fprintf(fid,'order for MC appr  = %6d  \n',results.order);
fprintf(fid,'iter  for MC appr  = %6d  \n',results.iter);
end;
if results.lflag == 2
fprintf(fid,'Pace and Barry, 1998 spline lndet approximation used \n');
end;

fprintf(fid,'min and max lambda = %9.4f,%9.4f \n',results.rmin,results.rmax);
fprintf(fid,'***************************************************************\n');

vstring = 'Variable';
bstring = 'Prior Mean';
tstring = 'Std Deviation';

tmp = [results.bmean results.bstd];
    

cnames = strvcat(bstring,tstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname(i+1,:));
end;

pin.fmt = '%16.6f';
pin.fid = fid;
pin.cnames = cnames;
pin.rnames = rnames;

mprint(tmp,pin);
fprintf(fid,'***************************************************************\n');
fprintf(fid,'      Posterior Estimates \n');

 if strcmp(results.tflag,'tstat')
% now print coefficient estimates, t-statistics and probabilities
tout = norm_prb(results.tstat); % find asymptotic z (normal) probabilities
      
tmp = [bout results.tstat tout];  % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Asymptot t-stat'; pstring = 'z-probability';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
 else % use p-levels for Bayesian results
tmp = [bout bstd tout];  % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Std Deviation'; pstring = 'p-level';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
end;

return;

% <=================== end of semit_g case


case {'semt_g','semt_gc'} % <=================== Gibbs spatial error tobit model

nobs = results.nobs;
nvar = results.nvar;

% handling of vnames
Vname = 'Variable';
 for i=1:nvar
    tmp = ['variable ',num2str(i)];
    Vname = strvcat(Vname,tmp);
 end;
% add spatial rho parameter name
    Vname = strvcat(Vname,'lambda');

if (nflag == 1) % the user supplied variable names
Vname = 'Variable';
[tst_n nsize] = size(vnames);
 if tst_n ~= nvar+1
 fprintf(fid,'Wrong # of variable names in prt_sem -- check vnames argument \n');
 fprintf(fid,'will use generic variable names \n');
 nflag = 0;
 else,
 for i=1:nvar
    Vname = strvcat(Vname,vnames(i+1,:));
 end;
% add spatial rho parameter name
    Vname = strvcat(Vname,'lambda');
 end; % end of if-else
end; % end of nflag issue

% find posterior means
    tmp1 = mean(results.bdraw);
    pout = mean(results.pdraw);
    bout = [tmp1'
        pout];
    sige = mean(results.sdraw);
    tmp1 = std(results.bdraw);
    tmp2 = std(results.pdraw);
    bstd = [tmp1'
        tmp2];  


if strcmp(results.tflag,'tstat')
 tstat = bout./bstd;
 % find t-stat marginal probabilities
 tout = tdis_prb(tstat,results.nobs);
 results.tstat = bout./bstd; % trick for printing below
else % find plevels
 draws = [results.bdraw results.pdraw];
 for i=1:results.nvar+1;
 if bout(i,1) > 0
 cnt = find(draws(:,i) > 0);
 tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
 else
 cnt = find(draws(:,i) < 0);
 tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
 end; % end of if - else
 end; % end of for loop
end; 

y = results.y;
yhat = results.yhat;
e = y - yhat;
sigu = e'*e;
ym = y - mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % conventional r-squared

fprintf(fid,'\n');
fprintf(fid,'Bayesian spatial error Tobit model \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
fprintf(fid,'R-squared          = %9.4f \n',rsqr);
fprintf(fid,'sigma^2            = %9.4f \n',sige);
if results.rdraw == 0
fprintf(fid,'r-value            = %6d   \n',results.r);
else
fprintf(fid,'mean of rdraws     = %9.4f \n',mean(results.rdraw));
fprintf(fid,'gam(m,k) prior     = %6d,%6d \n',results.m,results.k);
end;    
fprintf(fid,'Nobs, Nvars        = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'# censored values  = %6d \n',results.nobsc);
fprintf(fid,'ndraws,nomit       = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'time in secs       = %9.4f   \n',results.time);
fprintf(fid,'min and max lambda = %9.4f,%9.4f \n',results.rmin,results.rmax);
fprintf(fid,'***************************************************************\n');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -