📄 compare_models2.m
字号:
% PURPOSE: An example of using sar_g() sem_g() Gibbs sampling
% spatial model comparisons using log marginal posterior
% (on a small data set)
%---------------------------------------------------
% USAGE: model_compare
%---------------------------------------------------
clear all;
load anselin.dat; % standardized 1st-order spatial weight matrix
y = anselin(:,1);
n = length(y);
x = [ones(n,1) anselin(:,2:3)];
[n,k] = size(x);
vnames = strvcat('crime','constant','income','hvalue');
load wmat.dat;
W = sparse(wmat(:,1),wmat(:,2),wmat(:,3));
[n junk] = size(W);
% Gibbs sampling function homoscedastic prior
prior.novi = 1; % homoscedastic prior for comparison
ndraw = 2500;
nomit = 500;
prior.lflag = 0; % full lndet calculation
results1 = sem_g(y,x,W,ndraw,nomit,prior);
prt(results1);
results2 = sdm_g(y,x,W,ndraw,nomit,prior);
prt(results2);
probs = model_probs(results1,results2);
fprintf(1,'posterior probs for sem versus sdm model \n');
in.rnames = strvcat('Models','sem','sdm');
mprint(probs,in);
% do maximum likelihood estimates for comparison
info.lflag = 0; % full lndet calculation
results3 = sem(y,x,W,info);
prt(results3);
results4 = sdm(y,x,W,info);
prt(results4);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -