📄 sem_g.m
字号:
function results = sem_g(y,x,W,ndraw,nomit,prior)
% PURPOSE: Bayesian estimates of the spatial error model
% y = XB + u, u = rho*W + e
% e = N(0,sige*V), V = diag(v1,v2,...vn)
% r/vi = ID chi(r)/r, r = Gamma(m,k)
% B = N(c,T),
% 1/sige = Gamma(nu,d0),
% rho = Uniform(rmin,rmax), or rho = beta(a1,a2);
%-------------------------------------------------------------
% USAGE: results = sem_g(y,x,W,ndraw,nomit,prior)
% where: y = dependent variable vector (nobs x 1)
% x = independent variables matrix (nobs x nvar)
% W = spatial weight matrix (standardized, row-sums = 1)
% ndraw = # of draws
% nomit = # of initial draws omitted for burn-in
% prior = a structure variable with:
% prior.beta = prior means for beta, c above (default 0)
% priov.bcov = prior beta covariance , T above (default 1e+12)
% prior.novi = 1 turns off sampling for vi, producing homoscedastic model
% prior.rval = r prior hyperparameter, default=4
% prior.m = informative Gamma(m,k) prior on r
% prior.k = (default: not used)
% prior.nu = informative Gamma(nu,d0) prior on sige
% prior.d0 = default: nu=0,d0=0 (diffuse prior)
% prior.a1 = parameter for beta(a1,a2) prior on rho see: 'help beta_prior'
% prior.a2 = (default = 1.0, a uniform prior on rmin,rmax)
% prior.rmin = (optional) min rho used in sampling (default = -1)
% prior.rmax = (optional) max rho used in sampling (default = +1)
% prior.eigs = 0 to compute rmin/rmax using eigenvalues, (1 = don't compute default)
% prior.lflag = 0 for full lndet computation (default = 1, fastest)
% = 1 for MC approx (fast for large problems)
% = 2 for Spline approx (medium speed)
% prior.dflag = 1 for Metropolis-Hastings sampling for rho (default)
% = 0 for griddy gibbs with univariate numerical integration
% prior.order = order to use with prior.lflag = 1 option (default = 50)
% prior.iter = iters to use with prior.lflag = 1 option (default = 30)
% prior.lndet = a matrix returned by sar, sar_g, sarp_g, etc.
% containing log-determinant information to save time
% prior.mlog = 0 for no log-marginal likelihood,
% = 1 for log-marginal likelihood, default = 1
%-------------------------------------------------------------
% RETURNS: a structure:
% results.meth = 'sem_g'
% results.beta = posterior mean of bhat
% results.rho = posterior mean of rho
% results.sige = posterior mean of sige
% results.bdraw = bhat draws (ndraw-nomit x nvar)
% results.pdraw = rho draws (ndraw-nomit x 1)
% results.sdraw = sige draws (ndraw-nomit x 1)
% results.vmean = mean of vi draws (nobs x 1)
% results.rdraw = r draws (ndraw-nomit x 1) (if m,k input)
% results.bmean = b prior means, prior.beta from input
% results.bstd = b prior std deviations sqrt(diag(prior.bcov))
% results.r = value of hyperparameter r (if input)
% results.nobs = # of observations
% results.nvar = # of variables in x-matrix
% results.ndraw = # of draws
% results.nomit = # of initial draws omitted
% results.y = y-vector from input (nobs x 1)
% results.yhat = mean of posterior predicted (nobs x 1)
% results.resid = residuals, based on posterior means
% results.rsqr = r-squared based on posterior means
% results.rbar = adjusted r-squared
% results.nu = nu prior parameter
% results.d0 = d0 prior parameter
% results.a1 = a1 parameter for beta prior on rho from input, or default value
% results.a2 = a2 parameter for beta prior on rho from input, or default value
% results.time1 = time for eigenvalue calculation
% results.time2 = time for log determinant calcluation
% results.time3 = time for sampling
% results.time = total time taken
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.tflag = 'plevel' (default) for printing p-levels
% = 'tstat' for printing bogus t-statistics
% results.lflag = lflag from input
% results.iter = prior.iter option from input
% results.order = prior.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95]
% intervals for the case of lflag = 1
% results.lndet = a matrix containing log-determinant information
% (for use in later function calls to save time)
% results.mlike = log marginal likelihood for model comparisons,
% (a vector ranging over rho-values from rmin to rmax that can be
% integrated for model comparison)
% results.acc = acceptance rate for M-H sampling (ndraw x 1) vector
% --------------------------------------------------------------
% NOTES: - use either improper prior.rval
% or informative Gamma prior.m, prior.k, not both of them
% - for n < 1000 you should use lflag = 0 to get exact results
% - use a1 = 1.0 and a2 = 1.0 for uniform prior on rho
% --------------------------------------------------------------
% SEE ALSO: (sem_gd, sem_gd2 demos) prt
% --------------------------------------------------------------
% REFERENCES: James P. LeSage, `Bayesian Estimation of Spatial Autoregressive
% Models', International Regional Science Review, 1997
% Volume 20, number 1\&2, pp. 113-129.
% For lndet information see: Ronald Barry and R. Kelley Pace,
% "A Monte Carlo Estimator of the Log Determinant of Large Sparse Matrices",
% Linear Algebra and its Applications", Volume 289, Number 1-3, 1999, pp. 41-54.
% and: R. Kelley Pace and Ronald P. Barry
% "Simulating Mixed Regressive Spatially autoregressive Estimators",
% Computational Statistics, 1998, Vol. 13, pp. 397-418.
%----------------------------------------------------------------
% written by:
% James P. LeSage, 12/2001, updated 7/2003
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
% NOTE: some of the speed for large problems comes from:
% the use of methods pioneered by Pace and Barry.
% R. Kelley Pace was kind enough to provide functions
% lndetmc, and lndetint from his spatial statistics toolbox
% for which I'm very grateful.
timet = clock;
% error checking on inputs
[n junk] = size(y);
results.y = y;
[n1 k] = size(x);
[n3 n4] = size(W);
time1 = 0;
time2 = 0;
time3 = 0;
if n1 ~= n
error('sem_g: x-matrix contains wrong # of observations');
elseif n3 ~= n4
error('sem_g: W matrix is not square');
elseif n3~= n
error('sem_g: W matrix is not the same size at y,x');
end;
if nargin == 5
prior.lflag = 1;
end;
[nu,d0,rval,mm,kk,rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,novi_flag,c,T,cc,metflag,a1,a2,inform_flag,mlog] = sem_parse(prior,k);
results.order = order;
results.iter = iter;
% error checking on prior information inputs
[checkk,junk] = size(c);
if checkk ~= k
error('sem_g: prior means are wrong');
elseif junk ~= 1
error('sem_g: prior means are wrong');
end;
[checkk junk] = size(T);
if checkk ~= k
error('sem_g: prior bcov is wrong');
elseif junk ~= k
error('sem_g: prior bcov is wrong');
end;
V = ones(n,1); in = ones(n,1); % initial value for V
ys = y.*sqrt(V);
vi = in;
bsave = zeros(ndraw-nomit,1); % allocate storage for results
ssave = zeros(ndraw-nomit,1);
vmean = zeros(n,1);
yhat = zeros(n,1);
if mm~= 0 % storage for draws on rvalue
rsave = zeros(ndraw-nomit,1);
end;
[rmin,rmax,time1] = sem_eigs(eflag,W,rmin,rmax,n);
results.rmin = rmin;
results.rmax = rmax;
results.lflag = ldetflag;
[detval,time2] = sem_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% storage for draws
bsave = zeros(ndraw-nomit,k);
if mm~= 0
rsave = zeros(ndraw-nomit,1);
end;
psave = zeros(ndraw-nomit,1);
ssave = zeros(ndraw-nomit,1);
vmean = zeros(n,1);
acc_rate = zeros(ndraw,1);
% ====== initializations
% compute this stuff once to save time
TI = inv(T);
TIc = TI*c;
iter = 1;
in = ones(n,1);
V = in;
Wy = sparse(W)*y;
Wx = sparse(W)*x;
vi = in;
V = vi;
switch (novi_flag)
case{0} % we do heteroscedastic model
hwait = waitbar(0,'sem\_g: MCMC sampling ...');
t0 = clock;
iter = 1;
acc = 0;
while (iter <= ndraw); % start sampling;
% update beta
xs = matmul(sqrt(V),x);
ys = sqrt(V).*y;;
Wxs = W*xs;
Wys = W*ys;
xss = xs - rho*Wxs;
AI = inv(xss'*xss + sige*TI);
yss = ys - rho*Wys;
b = xss'*yss + sige*TIc;
b0 = AI*b;
bhat = norm_rnd(sige*AI) + b0;
% update sige
nu1 = n + 2*nu;
e = yss-xss*bhat;
ed = e - rho*sparse(W)*e;
d1 = 2*d0 + ed'*ed;
chi = chis_rnd(1,nu1);
sige = d1/chi;
% update vi
ev = ys - xs*bhat;
%chiv = chis_rnd(n,rval+1);
chiv = chi2rnd(rval+1,n,1);
vi = ((ev.*ev/sige) + in*rval)./chiv;
V = in./vi;
% update rval
if mm ~= 0
rval = gamm_rnd(1,1,mm,kk);
end;
if metflag == 0
% update rho using numerical integration
rho = draw_rho(detval,y,x,Wy,Wx,V,n,k,rmin,rmax,rho);
else
% update rho using metropolis-hastings
% numerical integration is too slow here
xb = x*bhat;
rhox = c_sem(rho,y,x,bhat,sige,W,detval,V,a1,a2);
accept = 0;
rho2 = rho + cc*randn(1,1);
while accept == 0
if ((rho2 > rmin) & (rho2 < rmax));
accept = 1;
else
rho2 = rho + cc*randn(1,1);
end;
end;
rhoy = c_sem(rho2,y,x,bhat,sige,W,detval,V,a1,a2);
ru = unif_rnd(1,0,1);
if ((rhoy - rhox) > exp(1)),
p = 1;
else,
ratio = exp(rhoy-rhox);
p = min(1,ratio);
end;
if (ru < p)
rho = rho2;
acc = acc + 1;
end;
acc_rate(iter,1) = acc/iter;
% update cc based on std of rho draws
if acc_rate(iter,1) < 0.4
cc = cc/1.1;
end;
if acc_rate(iter,1) > 0.6
cc = cc*1.1;
end;
end; % end of if metflag
if iter > nomit % if we are past burn-in, save the draws
bsave(iter-nomit,1:k) = bhat';
ssave(iter-nomit,1) = sige;
psave(iter-nomit,1) = rho;
vmean = vmean + vi;
if mm~= 0
rsave(iter-nomit,1) = rval;
end;
end;
iter = iter + 1;
waitbar(iter/ndraw);
end; % end of sampling loop
close(hwait);
time3 = etime(clock,t0);
% compute posterior means and evaluate the log-marginal
vmean = vmean/(ndraw-nomit);
bmean = mean(bsave);
bmean = bmean';
rho = mean(psave);
V = in./vmean;
ys = y.*sqrt(V);
xs = matmul(x,sqrt(V));
Wys = sparse(W)*ys;
Wxs = sparse(W)*xs;
[nobs,nvar] = size(xs);
if mlog == 1
% compute log marginal likelihood for model comparisions
if inform_flag == 0
mlike = sem_marginal(detval,ys,xs,Wys,Wxs,nobs,nvar,a1,a2);
else
mlike = sem_marginal2(detval,ys,xs,Wys,Wxs,nobs,nvar,a1,a2,c,TI,sige);
end;
end;
[n nvar] = size(x);
yhat = x*bmean;
y = results.y;
n = length(y);
e = y-yhat;
eD = e - rho*sparse(W)*e;
epe = eD'*eD;
sigu = epe;
sige = sigu/(n-nvar);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -