📄 test_bayes5.m
字号:
% PURPOSE: A comparison of Bayesian and ML estimates
% using a small dataset
%---------------------------------------------------
% USAGE: test_bayes
%---------------------------------------------------
clear all;
n = 10000;
xc = 5*randn(n,1);
yc = 5*randn(n,1);
% create standardized 1st-order spatial weight matrix
[j1 W j2] = xy2cont(xc,yc);
clear xc;
clear yc;
sige = 0.1;
k = 3;
x = randn(n,k);
beta = zeros(k,1);
beta(1,1) = 1.0;
beta(2,1) = 1.0;
beta(3,1) = 1.0;
vnames = strvcat('y','x1','x2','x3');
rgrid = [-0.8 -0.4 0 0.4 0.8];
nrho = 5;
for i=1:nrho;
rho = rgrid(i);
u = (speye(n) - rho*W)\(randn(n,1)*sqrt(sige));
y = x*beta + u;
prior.novi = 1; % homoscedastic prior for comparison
ndraw = 1500;
nomit = 500;
results3 = sem_gmm(y,x,W);
prt(results3,vnames);
results2 = sem(y,x,W);
prt(results2,vnames);
results1 = sem_g(y,x,W,ndraw,nomit,prior);
prt(results1,vnames);
betas = [results1.beta results2.beta results3.beta];
rhos = [results1.rho results2.rho results3.lambda];
rnames = strvcat('Variables');
rnames = strvcat(rnames,vnames(2:end,:));
in.rnames = strvcat(rnames,'lambda');
in.cnames = strvcat('Bayesian-SEM','Maxlik-SEM','GMM-SEM');
out = [betas
rhos];
fprintf(1,'==== true rho = %8.4f \n',rho);
mprint(out,in);
end; % end of loop over rho values
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -