📄 semp_g.m
字号:
% ldetflag,eflag,order,iter,novi_flag,c,T,prior_beta,cc,metflag,a1,a2,inform_flag] =
% sem_parse(prior,k)
% where info contains the structure variable with inputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% set defaults
eflag = 1; % default to not computing eigenvalues
ldetflag = 1; % default to 1999 Pace and Barry MC determinant approx
order = 50; % there are parameters used by the MC det approx
iter = 30; % defaults based on Pace and Barry recommendation
rmin = -1; % use -1,1 rho interval as default
rmax = 1;
detval = 0; % just a flag
rho = 0.5;
sige = 1.0;
rval = 4;
mm = 0;
kk = 0;
nu = 0;
d0 = 0;
a1 = 1.01;
a2 = 1.01;
c = zeros(k,1); % diffuse prior for beta
T = eye(k)*1e+12;
novi_flag = 0; % default is do vi-estimates
metflag = 1; % default to Metropolis-Hasting sampling
cc = 0.2; % initial tuning parameter for M-H sampling
inform_flag = 0; % flag for diffuse prior on beta
fields = fieldnames(prior);
nf = length(fields);
if nf > 0
for i=1:nf
if strcmp(fields{i},'nu')
nu = prior.nu;
elseif strcmp(fields{i},'d0')
d0 = prior.d0;
elseif strcmp(fields{i},'rval')
rval = prior.rval;
elseif strcmp(fields{i},'eigs')
eflag = prior.eigs;
elseif strcmp(fields{i},'dflag')
metflag = prior.dflag;
elseif strcmp(fields{i},'a1')
a1 = prior.a1;
elseif strcmp(fields{i},'a2')
a2 = prior.a2;
elseif strcmp(fields{i},'m')
mm = prior.m;
kk = prior.k;
rval = gamm_rnd(1,1,mm,kk); % initial value for rval
elseif strcmp(fields{i},'beta')
c = prior.beta; inform_flag = 1; % flag for informative prior on beta
elseif strcmp(fields{i},'bcov')
T = prior.bcov; inform_flag = 1; % flag for informative prior on beta
elseif strcmp(fields{i},'rmin')
rmin = prior.rmin;
elseif strcmp(fields{i},'rmax')
rmax = prior.rmax;
elseif strcmp(fields{i},'lndet')
detval = prior.lndet;
ldetflag = -1;
rmin = detval(1,1);
nr = length(detval);
rmax = detval(nr,1);
elseif strcmp(fields{i},'lflag')
tst = prior.lflag;
if tst == 0,
ldetflag = 0;
elseif tst == 1,
ldetflag = 1;
elseif tst == 2,
ldetflag = 2;
else
error('semp_g: unrecognizable lflag value on input');
end;
elseif strcmp(fields{i},'order')
order = prior.order;
elseif strcmp(fields{i},'iter')
iter = prior.iter;
elseif strcmp(fields{i},'novi')
novi_flag = prior.novi;
end;
end;
else, % the user has input a blank info structure
% so we use the defaults
end;
function [rmin,rmax,time2] = sem_eigs(eflag,W,rmin,rmax,n);
% PURPOSE: compute the eigenvalues for the weight matrix
% ---------------------------------------------------
% USAGE: [rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,W)
% where eflag is an input flag, W is the weight matrix
% rmin,rmax may be used as default outputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
if eflag == 0
t0 = clock;
opt.tol = 1e-3; opt.disp = 0;
lambda = eigs(sparse(W),speye(n),1,'SR',opt);
rmin = 1/lambda;
rmax = 1;
time2 = etime(clock,t0);
else
time2 = 0;
end;
function [detval,time1] = sem_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% PURPOSE: compute the log determinant |I_n - rho*W|
% using the user-selected (or default) method
% ---------------------------------------------------
% USAGE: detval = far_lndet(lflag,W,rmin,rmax)
% where eflag,rmin,rmax,W contains input flags
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% do lndet approximation calculations if needed
if ldetflag == 0 % no approximation
t0 = clock;
out = lndetfull(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 1 % use Pace and Barry, 1999 MC approximation
t0 = clock;
out = lndetmc(order,iter,W,rmin,rmax);
time1 = etime(clock,t0);
results.limit = [out.rho out.lo95 out.lndet out.up95];
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 2 % use Pace and Barry, 1998 spline interpolation
t0 = clock;
out = lndetint(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == -1 % the user fed down a detval matrix
time1 = 0;
% check to see if this is right
if detval == 0
error('semp_g: wrgon lndet input argument');
end;
[n1,n2] = size(detval);
if n2 ~= 2
error('semp_g: wrong sized lndet input argument');
elseif n1 == 1
error('semp_g: wrong sized lndet input argument');
end;
end;
function out = sem_marginal(detval,y,x,Wy,Wx,nobs,nvar,a1,a2)
% PURPOSE: returns a vector of the log-marginal over a grid of rho-values
% -------------------------------------------------------------------------
% USAGE: out = sem_marginal(detval,y,x,Wy,Wx,nobs,nvar,a1,a2)
% where: detval = an ngrid x 2 matrix with rho-values and lndet values
% y = y-vector
% x = x-matrix
% Wy = W*y-vector
% Wx = W*x-matrix
% nobs = # of observations
% nvar = # of explanatory variables
% a1 = parameter for beta prior on rho
% a2 = parameter for beta prior on rho
% -------------------------------------------------------------------------
% RETURNS: out = a structure variable
% out.log = log marginal, a vector the length of detval
% out.lik = concentrated log-likelihood vector the length of detval
% -------------------------------------------------------------------------
% NOTES: works only for homoscedastic SEM model
% we must feed in ys = sqrt(V)*y, xs = sqrt(V)*X
% as well as logdetx = log(xs'*xs) for heteroscedastic model
% -------------------------------------------------------------------------
% written by:
% James P. LeSage, 7/2003
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
nmk = (nobs-nvar)/2;
nrho = length(detval(:,1));
iota = ones(nrho,1);
rvec = detval(:,1);
epe = zeros(nrho,1);
rgrid = detval(1,1)+0.001:0.1:detval(end,1)-0.001;
rgrid = rgrid';
epetmp = zeros(length(rgrid),1);
detxtmp = zeros(length(rgrid),1);
for i=1:length(rgrid);
xs = x - rgrid(i,1)*Wx;
ys = y - rgrid(i,1)*Wy;
bs = (xs'*xs)\(xs'*ys);
e = ys - xs*bs;
epetmp(i,1) = e'*e;
detxtmp(i,1) = det(xs'*xs);
end;
% spline interpolate epetmp
tt=rvec; % interpolate a finer grid
epe = interp1(rgrid,epetmp,rvec,'spline');
detx = interp1(rgrid,detxtmp,rvec,'spline');
bprior = beta_prior(detval(:,1),a1,a2);
% C is a constant of integration that can vary with nvars, so for model
% comparisions involving different nvars we need to include this
C = log(bprior) + gammaln(nmk) - nmk*log(2*pi) ;
den = detval(:,2) - 0.5*log(detx) - nmk*log(epe);
den = real(den);
out = den + C;
function out = sem_marginal2(detval,y,x,Wy,Wx,nobs,nvar,a1,a2,c,TI,sige)
% PURPOSE: returns a vector of the log-marginal over a grid of rho-values
% for the case of an informative prior on beta
% -------------------------------------------------------------------------
% USAGE: out = sem_marginal2(detval,y,x,Wy,Wx,nobs,nvar,a1,a2,c,TI,sige)
% where: detval = an ngrid x 2 matrix with rho-values and lndet values
% y = y-vector
% x = x-matrix
% Wy = W*y-vector
% Wx = W*x-matrix
% nobs = # of observations
% nvar = # of explanatory variables
% a1 = parameter for beta prior on rho
% a2 = parameter for beta prior on rho
% -------------------------------------------------------------------------
% RETURNS: out = a structure variable
% out.log = log marginal, a vector the length of detval
% out.lik = concentrated log-likelihood vector the length of detval
% -------------------------------------------------------------------------
% NOTES: works only for homoscedastic SEM model
% we must feed in ys = sqrt(V)*y, xs = sqrt(V)*X
% as well as logdetx = log(xs'*xs) for heteroscedastic model
% -------------------------------------------------------------------------
% written by:
% James P. LeSage, 7/2003
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
nmk = (nobs-nvar)/2;
nrho = length(detval(:,1));
iota = ones(nrho,1);
rvec = detval(:,1);
epe = zeros(nrho,1);
rgrid = detval(1,1)+0.001:0.1:detval(end,1)-0.001;
rgrid = rgrid';
epetmp = zeros(length(rgrid),1);
detxtmp = zeros(length(rgrid),1);
Q1 = zeros(length(rgrid),1);
Q2 = zeros(length(rgrid),1);
sTI = sige*TI;
for i=1:length(rgrid);
xs = x - rgrid(i,1)*Wx;
ys = y - rgrid(i,1)*Wy;
bs = (xs'*xs)\(xs'*ys);
beta = (xs'*xs + sTI)\(xs'*ys + sTI*c);
e = ys - xs*bs;
epetmp(i,1) = e'*e;
detxtmp(i,1) = det(xs'*xs);
Q1(i,1) = (c - beta)'*sTI*(c - beta);
Q2(i,1) = (bs - beta)'*(xs'*xs)*(bs - beta);
end;
% spline interpolate epetmp
tt=rvec; % interpolate a finer grid
epe = interp1(rgrid,epetmp,rvec,'spline');
detx = interp1(rgrid,detxtmp,rvec,'spline');
Q1 = interp1(rgrid,Q1,rvec,'spline');
Q2 = interp1(rgrid,Q2,rvec,'spline');
bprior = beta_prior(detval(:,1),a1,a2);
% C is a constant of integration that can vary with nvars, so for model
% comparisions involving different nvars we need to include this
C = log(bprior) + gammaln(nmk) - nmk*log(2*pi) ;
den = detval(:,2) - 0.5*log(detx) - nmk*log(epe + Q1 + Q2);
den = real(den);
out = den + C;
function rho = olddraw_rho(detval,y,x,Wy,Wx,V,n,k,rmin,rmax,rho)
% update rho via univariate numerical integration
% for the heteroscedastic model case
nmk = (n-k)/2;
nrho = length(detval(:,1));
iota = ones(nrho,1);
rvec = detval(:,1);
epe = zeros(nrho,1);
for i=1:nrho;
xs = x - rvec(i,1)*Wx;
xs = matmul(xs,sqrt(V));
ys = y - rvec(i,1)*Wy;
ys = ys.*sqrt(V);
bs = (xs'*xs)\(xs'*ys);
e = ys - xs*bs;
epe(i,1) = e'*e;
end;
den = detval(:,2) - nmk*log(epe);
adj = max(den);
den = den - adj;
den = exp(den);
n = length(den);
y = detval(:,1);
x = den;
% trapezoid rule
isum = sum((y(2:n,1) + y(1:n-1,1)).*(x(2:n,1) - x(1:n-1,1))/2);
z = abs(x/isum);
den = cumsum(z);
rnd = unif_rnd(1,0,1)*sum(z);
ind = find(den <= rnd);
idraw = max(ind);
if (idraw > 0 & idraw < nrho)
rho = detval(idraw,1);
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -