📄 compare_models.m
字号:
% PURPOSE: An example of using sar_g() sem_g() Gibbs sampling
% spatial model comparisons using log marginal posterior
% (on a small data set)
%---------------------------------------------------
% USAGE: model_compare
%---------------------------------------------------
clear all;
load anselin.dat; % standardized 1st-order spatial weight matrix
y = anselin(:,1);
n = length(y);
x = [ones(n,1) anselin(:,2:3)];
[n,k] = size(x);
vnames = strvcat('crime','constant','income','hvalue');
latt = anselin(:,4);
long = anselin(:,5);
[junk W junk] = xy2cont(latt,long);
[n junk] = size(W);
% generate sem model
IN = eye(n);
beta = ones(k,1);
x = randn(n,k);
rho = 0.7;
sige = 1;
y = x*beta + (IN - rho*W)\(randn(n,1)*sqrt(sige));
% Gibbs sampling function homoscedastic prior
prior.novi = 1; % homoscedastic prior for comparison
ndraw = 2500;
nomit = 500;
results1 = sem_g(y,x,W,ndraw,nomit,prior);
prt(results1);
results2 = sar_g(y,x,W,ndraw,nomit,prior);
prt(results2);
probs = model_probs(results1,results2);
fprintf(1,'posterior probs for sar versus sem model \n');
fprintf(1,'*** true model is sem *** \n');
in.rnames = strvcat('Models','sem','sar');
mprint(probs,in);
% generate an sar model
n = length(latt);
IN = eye(n);
rho = 0.7; % true value of rho
sige = 0.5;
k = 3;
x = randn(n,k);
x(:,1) = ones(n,1);
beta(1,1) = -1.0;
beta(2,1) = 0.0;
beta(3,1) = 1.0;
% for sar model
vnames = strvcat('y','constant','x1','x2');
% sar model generated here
y = (IN-rho*W)\(x*beta) + (IN-rho*W)\(randn(n,1)*sqrt(sige));
% homoscedastic prior
prior2.novi = 1;
ndraw = 2500;
nomit = 500;
results3 = sem_g(y,x,W,ndraw,nomit,prior2);
prt(results3);
results4 = sar_g(y,x,W,ndraw,nomit,prior2);
prt(results4);
probs = model_probs(results3,results4);
fprintf(1,'posterior probs for sar versus sem model \n');
fprintf(1,'*** true model is sar *** \n');
in.rnames = strvcat('Models','sem','sar');
mprint(probs,in);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -