📄 dcc_univariate_simulate.m
字号:
function [simulatedata, H] = dcc_univariate_simulate(parameters,p,q,data)
% PURPOSE:
% Make a univariate time series of conditional variances for use by DCC_GARCH_FULL_LIKELIHOOD
%
%
% USAGE:
% [simulatedata, H] = dcc_univariate_simulate(parameters,p,q,data)
%
%
% INPUTS:
% parameters - A vector(p+q+1) by 1 of parameters of form
% [omega archp(1) ... archp(p) garchp(1) ... garchp(q)]
% p - The number of innovations to include(scalar)
% q - The length of the AR in the Garch process(scalar)
% data - A set of zero mean residuals you wish to introduce garch effects to
%
% OUTPUTS:
% simulatedata - The data that has had garch standard deviation applied to it
% H - The conditional variances for the data
%
%
% COMMENTS:
%
%
% Author: Kevin Sheppard
% kksheppard@ucsd.edu
% Revision: 2 Date: 12/31/2001
constp=parameters(1);
archp=parameters(2:p+1);
garchp=parameters(p+2:p+q+1);
if isempty(q)
m=p;
else
m = max(p,q);
end
[t,k]=size(data);
UncondStd = sqrt(cov(data));
h=UncondStd.^2*ones(t+m,1);
data=[UncondStd*ones(m,1);data];
RandomNums=randn(t+m,1);
T=size(data,1);
h=garchcore(data,parameters,UncondStd^2,p,q,m,T);
% for t = (m + 1):T
% h(t) = parameters' * [1 ; data(t-(1:p)).^2; h(t-(1:q)) ];
% end
simulatedata=data((m+1):T);
H=h((m + 1):T);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -