📄 dcc_mvgarch_full_likelihood.m
字号:
function [logL, Rt, likelihoods, Qt]=dcc_garch_full_likelihood(parameters, data, archP,garchQ,dccP,dccQ)
% PURPOSE:
% Full likelihood for use in the DCC_MVGARCH estimation and
% returns the likelihood of the QMLE estimates of the DCC parameters
%
% USAGE:
% [logL, Rt, likelihoods]=dcc_garch_full_likelihood(parameters, data, archP,garchQ,dccP,dccQ)
%
% INPUTS:
% parameters - A k+sum(archP)+sum(garchQ)+dccP+dccQ vector of parameters of the form
% [GarchParams(1) GarchParams(2) ... GarchParams(k) DCCParams]
% where the garch parameters from each estimation are of the form
% [omega(i) alpha(i1) alpha(i2) ... alpha(ip(i)) beta(i1) beta(i2) ... beta(iq(i))]
% and DCCparams are [DCCa DCCb]
% data - A t by k matrix of zero mean residuals
% archP - A vector of arch innovation lag lengths
% garchQ - A vector of Garch AR lag lengths
% dccP - A scalar of the DCC innovations lag length
% dccQ - A scalar of the DCC AR lag lengths
%
% OUTPUTS:
% logL - The estimated log likelihood
% Rt - The estimates covariances
% likelihoods - The likelihoods (t by 1)
%
% COMMENTS:
%
%
% Author: Kevin Sheppard
% kksheppard@ucsd.edu
% Revision: 2 Date: 12/31/2001
% First we need to make the T by K matrix of variances.
[t,k]=size(data);
index=1;
H=zeros(size(data));
for i=1:k
univariateparameters=parameters(index:index+archP(i)+garchQ(i));
[simulatedata, H(:,i)] = dcc_univariate_simulate(univariateparameters,archP(i),garchQ(i),data(:,i));
index=index+1+archP(i)+garchQ(i);
end
stdresid=data./sqrt(H);
Qbar=cov(stdresid);
stdresid=[ones(max(dccP,dccQ),k);stdresid];
a=parameters(index:index+dccP-1);
b=parameters(index+dccP:index+dccP+dccQ-1);
sumA=sum(a);
sumB=sum(b);
%First compute Qbar, the unconditional Correlation Matrix
% Next compute Qt
m=max(dccP,dccQ);
Qt=zeros(k,k,t+m);
Qt(:,:,1:m)=repmat(Qbar,[1 1 m]);
Rt=zeros(k,k,t+m);
logL=0;
likelihoods=zeros(t+m,1);
H=[zeros(m,k);H];
P=dccP;
Q=dccQ;
for j=(m+1):t+m
Qt(:,:,j)=Qbar*(1-sumA-sumB);
for i=1:P
Qt(:,:,j)=Qt(:,:,j)+a(i)*(stdresid(j-i,:)'*stdresid(j-i,:));
end
for i=1:Q
Qt(:,:,j)=Qt(:,:,j)+b(i)*Qt(:,:,j-i);
end
Rt(:,:,j)=Qt(:,:,j)./(sqrt(diag(Qt(:,:,j)))*sqrt(diag(Qt(:,:,j)))');
likelihoods(j)=k*log(2*pi)+sum(log(H(j,:)))+log(det(Rt(:,:,j)))+stdresid(j,:)*inv(Rt(:,:,j))*stdresid(j,:)';
logL=logL+likelihoods(j);
end;
Rt=Rt(:,:,(m+1:t+m));
logL=(1/2)*logL;
likelihoods=(1/2)*likelihoods(m+1:t+m);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -