📄 optim2_d.m
字号:
% PURPOSE: An example using fmin function% % to solve a spatial autoregressive model maximum% likelihood problem %---------------------------------------------------% USAGE: optim2_d%---------------------------------------------------clear all;load anselin.dat;% y = dependent variable% x = a matrix of indepdendent variablesy = anselin(:,1);ydev = y - mean(y);n = length(y);xc = anselin(:,4);yc = anselin(:,5);% construct Anselin (1988) 1st order contiguity matrix[j1 W j2] = xy2cont(xc,yc);rmin = -1;rmax = 1;out = lndetfull(W,rmin,rmax);tt=rmin:.001:rmax; % interpolate a finer gridouti = interp1(out.rho,out.lndet,tt','spline');detval = [tt' outi];% step 1) maximize concentrated likelihood function; options = optimset('fminbnd'); [p fval exitflag] = fminbnd('f_far',-1,1,options,y,W,detval);liktmp = fval if exitflag ~= 1 fprintf(1,'far: convergence not obtained in %4d iterations \n',optimget('MaxIter')); end;% step 2) find sigeWy = sparse(W)*y;epe = (y - p*Wy)'*(y-p*Wy); sige = epe/n; rho = p;yhat = p*Wy;resid = y - yhat; lik = -(liktmp + (n/2)*log(sige));% asymptotic t-stats parm = [p sige];hessn = hessian('f2_far',parm,y,W,detval);xpxi = inv(hessn);tstat = p/sqrt(xpxi(1,1));in.cnames = strvcat('rho','t-statistic');mprint([rho tstat],in);fprintf(1,'sigma value');mprint(sige);fprintf(1,'-log likelihood function value');mprint(lik);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -