📄 lo_like.m
字号:
function out = lo_like(b,y,x)
% PURPOSE: evaluate logit log-likelihood
%-----------------------------------------------------
% USAGE: like = lo_like(b,y,x,flag)
% where: b = parameter vector (k x 1)
% y = dependent variable vector (n x 1)
% x = explanatory variables matrix (n x m)
%-----------------------------------------------------
% NOTE: this function returns a scalar
% k ~= m because we may have additional parameters
% in addition to the m bhat's (e.g. sigma)
%-----------------------------------------------------
% SEE also: hessian, gradnt, gradt
%-----------------------------------------------------
% REFERENCES: Green, 1997 page 883
%-----------------------------------------------------
% written by:
% James P. LeSage, Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jpl@jpl.econ.utoledo.edu
i = ones(length(y),1);
cdf = i./(i+exp(-x*b));
tmp = find(cdf <=0);
[n1 n2] = size(tmp);
if n1 ~= 0
cdf(tmp) = 0.00001;
end;
tmp = find(cdf >= 1);
[n1 n2] = size(tmp);
if n1 ~= 0
cdf(tmp) = 0.99999;
end;
like = y.*log(cdf)+(i-y).*log(i-cdf);
out = sum(like);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -