📄 tobit_g.m
字号:
function results = tobit_g(y,x,ndraw,nomit,prior,start)
% PURPOSE: MCMC sampler for Bayesian Tobit model
% y = X B + E, E = N(0,sige*V),
% V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)
% B = N(c,T), sige = gamma(nu,d0)
%----------------------------------------------------------------
% USAGE: result = tobit_g(y,x,ndraw,nomit,prior,start)
% where: y = nobs x 1 independent variable vector
% x = nobs x nvar explanatory variables matrix
% ndraw = # of draws
% nomit = # of initial draws omitted for burn-in
% prior = a structure variable for prior information input
% prior.beta, prior means for beta, c above (default=0)
% priov.bcov, prior beta covariance, T above (default=1e+12)
% prior.rval, r prior hyperparameter, default=4
% prior.m, informative Gamma(m,k) prior on r
% prior.k, informative Gamma(m,k) prior on r
% default for above: not used, rval=4 is used
% prior.nu, informative Gamma(nu,d0) prior on sige
% prior.d0 informative Gamma(nu,d0) prior on sige
% default for above: nu=0,d0=0 (diffuse prior)
% prior.trunc = 'left' or 'right' (default = 'left')
% prior.limit = value for censoring (default = 0)
% start = (optional) structure containing starting values:
% defaults: max likelihood beta, sige, V= ones(n,1)
% start.b = beta starting values (nvar x 1)
% start.sige = sige starting value (1x1)
% start.V = V starting values (n x 1)
%---------------------------------------------------------------
% RETURNS: a structure:
% results.meth = 'tobit_g'
% results.bdraw = bhat draws (ndraw-nomit x nvar)
% results.sdraw = sige draws (ndraw-nomit x 1)
% results.vmean = mean of vi draws (1 x nobs)
% results.ymean = mean of y draws (1 x nobs)
% results.rdraw = r-value draws (ndraw-nomit x 1), if Gamma(m,k) prior
% results.pmean = b prior means
% results.pstd = b prior std deviations
% results.m = prior m-value for r hyperparameter (if input)
% results.k = prior k-value for r hyperparameter (if input)
% results.nu = prior nu-value for sige prior
% results.d0 = prior d0-value for sige prior
% results.r = value of hyperparameter r (if input)
% results.nobs = # of observations
% results.nobsc = # of censored observations
% results.nvar = # of variables
% results.ndraw = # of draws
% results.nomit = # of initial draws omitted
% results.y = actual observations
% results.x = x-matrix
% results.time = time taken for sampling
%----------------------------------------------------------------
% NOTE: use either improper prior.rval
% or informative Gamma prior.m, prior.k, not both of them
%----------------------------------------------------------------
% References: Siddhartha Chib
% Bayes Inference in the Tobit censored regression model
% J. Econometrics Vol. 51, 1992, pp. 79-100.
%----------------------------------------------------------------
% written by:
% James P. LeSage, Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
[n k] = size(x);
if nargin == 6 % user-supplied starting values
if ~isstruct(start)
error('tobit_g: must supply starting values in a structure');
end;
if ~isstruct(prior)
error('tobit_g: must supply the prior as a structure variable');
end;
sflag = 1; tflag = 0; vflag = 0;
b0 = start.b; sige = start.sig; V = start.V;
% error checking on starting values input
[n1 n2] = size(b0); [n3 n4] = size(sige); [n7 n8] = size(V);
if n1 ~= k
error('tobit_g: starting beta values are wrong');
elseif n2 ~= 1
error('tobit_g: starting beta values are wrong');
elseif n3 ~= 1
error('tobit_g: starting sige value is wrong');
elseif n4 ~= 1
error('tobit_g: starting sige value is wrong');
elseif n7 ~= n;
error('tobit_g: starting V should be nobs x 1');
elseif n8 ~= 1
error('tobit_g: starting V should be nobs x 1');
end;
fields = fieldnames(prior);
nf = length(fields);
mm = 0;
rval = 4; % rval = 4 is default
nu = 0; % default diffuse prior for sige
d0 = 0;
c = zeros(k,1);
T = eye(k)*1e+12;
for i=1:nf
if strcmp(fields{i},'rval')
rval = prior.rval;
elseif strcmp(fields{i},'m')
mm = prior.m;
kk = prior.k;
rval = gamm_rnd(1,1,mm,kk); % initial value for rval
elseif strcmp(fields{i},'beta')
c = prior.beta;
elseif strcmp(fields{i},'bcov')
T = prior.bcov;
elseif strcmp(fields{i},'nu')
nu = prior.nu;
elseif strcmp(fields{i},'d0')
d0 = prior.d0;
elseif strcmp(fields{i},'trunc');
if strcmp(prior.trunc,'left');
tflag = 0;
else
tflag = 1;
end;
elseif strcmp(fields{i},'limit');
vflag = prior.limit;
end;
end;
elseif nargin == 5 % probit maximum likelihood starting values
fields = fieldnames(prior);
nf = length(fields);
mm = 0;
rval = 4; % rval = 4 is default
nu = 0; % default diffuse prior for sige
d0 = 0;
c = zeros(k,1);
T = eye(k)*1e+12;
vflag = 0; tflag = 0;
for i=1:nf
if strcmp(fields{i},'rval')
rval = prior.rval;
elseif strcmp(fields{i},'m')
mm = prior.m;
kk = prior.k;
rval = gamm_rnd(1,1,mm,kk); % initial value for rval
elseif strcmp(fields{i},'beta')
c = prior.beta;
elseif strcmp(fields{i},'bcov')
T = prior.bcov;
elseif strcmp(fields{i},'nu')
nu = prior.nu;
elseif strcmp(fields{i},'d0')
d0 = prior.d0;
elseif strcmp(fields{i},'trunc');
if strcmp(prior.trunc,'left');
tflag = 0;
else
tflag = 1;
end;
elseif strcmp(fields{i},'limit');
vflag = prior.limit;
end;
end;
if tflag == 0
in.trunc = 'left';
elseif tflag == 1
in.trunc = 'right';
end;
in.limit = vflag;
resp = tobit(y,x,in);
b0 = resp.beta;
sige = resp.sige;
V = ones(n,1); in = ones(n,1); % initial value for V
elseif nargin == 4 % use default prior values
mm = 0;
rval = 4; % rval = 4 is default
nu = 0; % default diffuse prior for sige
d0 = 0;
c = zeros(k,1);
T = eye(k)*1e+12;
vflag = 0; tflag = 0;
resp = tobit(y,x);
b0 = resp.beta;
sige = resp.sige;
V = ones(n,1); in = ones(n,1); % initial value for V
else
error('Wrong # of arguments to tobit_g');
end;
% error checking on prior information inputs
[checkk,junk] = size(c);
if checkk ~= k
error('tobit_g: prior means are wrong');
elseif junk ~= 1
error('tobit_g: prior means are wrong');
end;
[checkk junk] = size(T);
if checkk ~= k
error('tobit_g: prior bcov is wrong');
elseif junk ~= k
error('tobit_g: prior bcov is wrong');
end;
Q = inv(T);
Qpc = Q*c;
bsave = zeros(ndraw-nomit,k); % allocate storage for results
ymean = zeros(1,n);
rsave = zeros(ndraw-nomit,1);
vmean = zeros(1,n);
ssave = zeros(ndraw-nomit,1);
yin = y; % save original y-values
% find # of censored observations
if tflag == 1
results.nobsc = length(find(y >= vflag));
else
results.nobsc = length(find(y <= vflag));
end;
ind_left = find(yin <= vflag);
ileft = ones(length(ind_left),1);
ind_right = find(yin >= vflag);
iright = ones(length(ind_right),1);
hwait = waitbar(0,'MCMC sampling ...');
t0 = clock;
% Start the sampling
for iter=1:ndraw;
% update b ;
xstar = matmul(x,sqrt(V));
ystar = y.*sqrt(V);
xpxi = inv(xstar'*xstar + sige*Q);
b = xpxi*(xstar'*ystar + sige*Qpc);
% draw MV normal with mean(b), var(b)
beta = norm_rnd(sige*xpxi) + b;
% update sige
nu1 = n + nu;
e = ystar - xstar*beta;
d1 = d0 + e'*e;
chi = chis_rnd(1,nu1);
sige =d1/chi;
% update V
e = y - x*beta;
chiv = chis_rnd(n,rval+1);
vi = ((e.*e./sige) + in*rval)./chiv;
V = in./vi;
% update r
if mm ~= 0
rval = gamm_rnd(1,1,mm,kk); % update rval
end;
% simulate y from truncated normal
aa = x*b;
if tflag == 0 % left censoring
% simulate from truncated normal at the right
y(ind_left,1) = normrt_rnd(aa(ind_left,1),sige*ileft,vflag*ileft);
else % right censoring
% simulate from truncated normal at the left
y(ind_right,1) = normlt_rnd(aa(ind_right,1),sige*iright,vflag*iright);
end;
if iter > nomit; % save draws
vmean = vmean + vi';
ssave(iter-nomit,1) = sige;
bsave(iter-nomit,:) = beta';
ymean = ymean + y';
if mm~= 0
rsave(i-nomit,1) = rval;
end;
end; % end of if
waitbar(iter/ndraw);
end;% end of for iter=1:ndraw
gtime = etime(clock,t0);
close(hwait);
vmean = vmean/(ndraw-nomit);
ymean = ymean/(ndraw-nomit);
results.meth = 'tobit_g';
results.bdraw = bsave;
results.sdraw = ssave;
results.vmean = vmean;
results.ymean = ymean;
results.pmean = c;
results.pstd = sqrt(diag(T));
if mm~= 0
results.rdraw = rsave;
results.m = mm;
results.k = kk;
else
results.r = rval;
results.rdraw = rsave;
end;
results.nobs = n;
results.nvar = k;
results.ndraw = ndraw;
results.nomit = nomit;
results.time = gtime;
results.y = yin;
results.x = x;
results.nu = nu;
results.d0 = d0;
results.pflag = 'plevel';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -