📄 becmf_g.m
字号:
function ylevf = becmf_g(y,nlag,nfor,begf,prior,ndraw,nomit,r);% PURPOSE: Gibbs sampling forecasts for Bayesian error % correction model using Minnesota-type prior% dy = A(L) DY + E, E = N(0,sige*V), % V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)% c = R A(L) + U, U = N(0,Z), Minnesota prior%---------------------------------------------------% USAGE: yfor = becmf_g(y,nlag,nfor,begf,prior,ndraw,nomit,x,transf)% where: y = an (nobs x neqs) matrix of y-vectors% nlag = the lag length% nfor = the forecast horizon% begf = the beginning date of the forecast % prior = a structure variable% prior.tight, Litterman's tightness hyperparameter% prior.weight, Litterman's weight (matrix or scalar)% prior.decay, Litterman's lag decay = lag^(-decay) % prior.rval, r prior hyperparameter, default=4% prior.m, informative Gamma(m,k) prior on r% prior.k, informative Gamma(m,k) prior on r % ndraw = # of draws% nomit = # of initial draws omitted for burn-in % r = # of co-integrating relations to use% (optional: this will be determined using% Johansen's trace test at 95%-level if left blank) %---------------------------------------------------------------% NOTES: - constant vector automatically included% - x-matrix of exogenous variables not allowed% - error correction variables are automatically% constructed using output from Johansen's ML-estimator %--------------------------------------------------------------- % RETURNS:% yfor = an nfor x neqs matrix of level forecasts for each equation%---------------------------------------------------------------% SEE ALSO: bvarf_g, becm_g, recmf_g, rvarf_g%--------------------------------------------------------------- % REFERENCES: LeSage, J.P. Applied Econometrics using MATLAB%---------------------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);% find # observations up to forecast periodnmin = min(nobs,begf-1);% error checking on inputif ~isstruct(prior) error('becmf_g: must supply the prior as a structure variable');end;nx = 0; if nargin == 8 % user supplied r-value % use johansen to determine ec variables % decrement r by 1 when calling johansen jres = johansen(y(1:nmin,:),0,nlag); % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r-error correction variables x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); elseif nargin == 7 % we have to determine r-value jres = johansen(y(1:nmin,:),0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs; if trstat(i,1) > tsignf(i,2) r = i; end; end; % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r error correction variables x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); else error('Wrong # of input arguments to becmf'); end;% do error checking here, even though it is redundant since% becm_g will do the same error checking. BUT, we avoid% confusing the poor user who will get error messages from% this routine that she called, rather than becm_gfields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf if strcmp(fields{i},'rval') rval = prior.rval; elseif strcmp(fields{i},'m') mm = prior.m; kk = prior.k; rval = gamm_rnd(1,1,mm,kk); % initial value for rval elseif strcmp(fields{i},'tight') tight = prior.tight; if tight < 0.01 warning('Tightness less than 0.01 in becmf_g'); elseif tight > 1.0 warning('Tightness greater than unity in becmf_g'); end; elseif strcmp(fields{i},'weight') weight = prior.weight; [wchk1 wchk2] = size(weight); if (wchk1 ~= wchk2) error('non-square weight matrix in becmf_g'); elseif wchk1 > 1 if wchk1 ~= neqs error('wrong size weight matrix in becmf_g'); end; end; elseif strcmp(fields{i},'decay') decay = prior.decay; if decay < 0 error('Negative lag decay in becmf_g'); end; end;end;if nlag < 1error('Lag length less than 1 in becmf_g');end;% truncate to begf-1 for estimation ytrunc = y(1:nmin,:);% call becm_g with input informationif r > 0result = becm_g(ytrunc,nlag,prior,ndraw,nomit,r);elseresult = becm_g(ytrunc,nlag,prior,ndraw,nomit);end;% all we really care about is:% result(eq).bdraw = bhat draws for equation eqfor j=1:neqs;b = mean(result(j).bdraw);bmat(:,j) = b';end;% given bmat values generate future forecasts % These are 1st-differences, % we worry about transforming back to levels later% transform to 1st difference formdy = zeros(nmin,neqs);for i=1:neqs;dy(:,i) = ytrunc(:,i) - lag(ytrunc(:,i),1);end;% 1-step-ahead forecast xtrunc = [dy(nmin-nlag:nmin,:) zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0ecterm = y(begf-1,index)*ecvectors(:,1:r); % add ec variables xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat; % NOTE this is a change forecastylev(1,i) = yfor(1,i) + y(nmin-1,i); % this adds the previous levelend;xnew = zeros(nlag+nx+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nfor;xnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);% construct ec terms based on levels forecast from previous periodsif nx > 0ecterm = ylev(step-1,index)*ecvectors(:,1:r);xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat; % change forecastylev(step,i) = yfor(step,i) + ylev(step-1,i); % level forecastend;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag; xnew(i,:) = yfor(cnt,:); cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);% construct ec terms based on levels forecast from previous periodsif nx > 0ecterm = ylev(step,index)*ecvectors(:,1:r);xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat; % change forecastylev(step+1,i) = yfor(step+1,i) + ylev(step-1,i); % level forecastend;end;end; % convert 1st difference forecasts to levelsylevf = zeros(nfor,neqs);% 1-step-ahead forecastylevf(1,:) = yfor(1,:) + y(begf-1,:); % add change to actual from time t;% 2-nfor-step-ahead forecastsfor i=2:nfor % ylevf(i,:) = yfor(i,:) + ylevf(i-1,:);end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -