⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 becmf_g.m

📁 计量工具箱
💻 M
字号:
function ylevf = becmf_g(y,nlag,nfor,begf,prior,ndraw,nomit,r);% PURPOSE: Gibbs sampling forecasts for Bayesian error %          correction model using Minnesota-type prior%          dy = A(L) DY + E, E = N(0,sige*V), %          V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)%          c = R A(L) + U, U = N(0,Z), Minnesota prior%---------------------------------------------------% USAGE:  yfor = becmf_g(y,nlag,nfor,begf,prior,ndraw,nomit,x,transf)% where:    y    = an (nobs x neqs) matrix of y-vectors%           nlag = the lag length%           nfor = the forecast horizon%           begf = the beginning date of the forecast           %          prior = a structure variable%               prior.tight,  Litterman's tightness hyperparameter%               prior.weight, Litterman's weight (matrix or scalar)%               prior.decay,  Litterman's lag decay = lag^(-decay) %               prior.rval, r prior hyperparameter, default=4%               prior.m,    informative Gamma(m,k) prior on r%               prior.k,    informative Gamma(m,k) prior on r  %          ndraw = # of draws%          nomit = # of initial draws omitted for burn-in       %              r = # of co-integrating relations to use%                  (optional: this will be determined using%                  Johansen's trace test at 95%-level if left blank)   %---------------------------------------------------------------% NOTES: - constant vector automatically included%        - x-matrix of exogenous variables not allowed%        - error correction variables are automatically%          constructed using output from Johansen's ML-estimator     %---------------------------------------------------------------      % RETURNS:%  yfor = an nfor x neqs matrix of level forecasts for each equation%---------------------------------------------------------------% SEE ALSO: bvarf_g, becm_g, recmf_g, rvarf_g%---------------------------------------------------------------                      % REFERENCES:  LeSage, J.P. Applied Econometrics using MATLAB%---------------------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);% find # observations up to forecast periodnmin = min(nobs,begf-1);% error checking on inputif ~isstruct(prior)    error('becmf_g: must supply the prior as a structure variable');end;nx = 0;  if nargin == 8 % user supplied r-value % use johansen to determine ec variables % decrement r by 1 when calling johansen jres = johansen(y(1:nmin,:),0,nlag); % recover error correction vectors ecvectors = jres.evec;        index = jres.ind;  % construct r-error correction variables x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r);    [nobs2 nx] = size(x);  elseif nargin == 7 % we have to determine r-value jres = johansen(y(1:nmin,:),0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs;  if trstat(i,1) > tsignf(i,2)   r = i;  end; end; % recover error correction vectors ecvectors = jres.evec;        index = jres.ind;  % construct r error correction variables x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r);    [nobs2 nx] = size(x);   else   error('Wrong # of input arguments to becmf');  end;% do error checking here, even though it is redundant since% becm_g will do the same error checking. BUT, we avoid% confusing the poor user who will get error messages from% this routine that she called, rather than becm_gfields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf    if strcmp(fields{i},'rval')        rval = prior.rval;     elseif strcmp(fields{i},'m')        mm = prior.m;        kk = prior.k;        rval = gamm_rnd(1,1,mm,kk);    % initial value for rval    elseif strcmp(fields{i},'tight')        tight = prior.tight;        if tight < 0.01        warning('Tightness less than 0.01 in becmf_g');        elseif tight > 1.0        warning('Tightness greater than unity in becmf_g');        end;    elseif strcmp(fields{i},'weight')        weight = prior.weight;              [wchk1 wchk2] = size(weight);       if (wchk1 ~= wchk2)        error('non-square weight matrix in becmf_g');       elseif wchk1 > 1        if wchk1 ~= neqs        error('wrong size weight matrix in becmf_g');        end;       end;    elseif strcmp(fields{i},'decay')        decay = prior.decay;            if decay < 0        error('Negative lag decay in becmf_g');        end;           end;end;if nlag < 1error('Lag length less than 1 in becmf_g');end;% truncate to begf-1 for estimation ytrunc = y(1:nmin,:);% call becm_g with input informationif r > 0result = becm_g(ytrunc,nlag,prior,ndraw,nomit,r);elseresult = becm_g(ytrunc,nlag,prior,ndraw,nomit);end;% all we really care about is:% result(eq).bdraw = bhat draws for equation eqfor j=1:neqs;b = mean(result(j).bdraw);bmat(:,j) = b';end;% given bmat values generate future forecasts % These are 1st-differences, % we worry about transforming back to levels later% transform to 1st difference formdy = zeros(nmin,neqs);for i=1:neqs;dy(:,i) = ytrunc(:,i) - lag(ytrunc(:,i),1);end;% 1-step-ahead forecast xtrunc = [dy(nmin-nlag:nmin,:)          zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0ecterm = y(begf-1,index)*ecvectors(:,1:r); % add ec variables xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat; % NOTE this is a change forecastylev(1,i) = yfor(1,i) + y(nmin-1,i); % this adds the previous levelend;xnew = zeros(nlag+nx+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nfor;xnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);% construct ec terms based on levels forecast from previous periodsif nx > 0ecterm = ylev(step-1,index)*ecvectors(:,1:r);xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat; % change forecastylev(step,i) = yfor(step,i) + ylev(step-1,i); % level forecastend;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag;  xnew(i,:) = yfor(cnt,:);  cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);% construct ec terms based on levels forecast from previous periodsif nx > 0ecterm = ylev(step,index)*ecvectors(:,1:r);xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat; % change forecastylev(step+1,i) = yfor(step+1,i) + ylev(step-1,i); % level forecastend;end;end;  % convert 1st difference forecasts to levelsylevf = zeros(nfor,neqs);% 1-step-ahead forecastylevf(1,:) = yfor(1,:) + y(begf-1,:); % add change to actual from time t;% 2-nfor-step-ahead forecastsfor i=2:nfor % ylevf(i,:) = yfor(i,:) + ylevf(i-1,:);end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -