📄 recmf.m
字号:
function ylevf = recmf(y,nlag,w,freq,nfor,begf,sig,tau,theta,r);% PURPOSE: Estimates a Bayesian error correction model of order n% using Random-Walk averaging prior and produces f-step-ahead forecasts. %---------------------------------------------------% USAGE: yfor = recmf(y,nlag,w,freq,nfor,begf,sig,tau,theta,r)% where: y = an (nobs x neqs) matrix of y-vectors in levels% nlag = the lag length% w = a weighting for important variables% freq = 1 for annual, 4 for quarterly, 12 for monthly% sig = prior variance hyperparameter (see below)% tau = prior variance hyperparameter (see below)% theta = prior variance hyperparameter (see below)% r = # of co-integrating relations to use% (optional: this will be determined using% Johansen's trace test at 95%-level if left blank) % nfor = the forecast horizon% begf = the beginning date of the forecast% priors for important variables are: N(1/ci,sig) for 1st own lag % (ci = # of important)% N( 0 ,tau*sig/k) for lag k=2,...,nlag% priors for unimportant variables are: N( 0 ,theta*sig/k) for lag k % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1 %---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % hence the need for a freq argument input.% the prior means rely on common (growth-rate) scaling of variables % - constant term included automatically % - x-matrix of exogenous variables not allowed% - error correction variables are automatically% constructed using output from Johansen's ML-estimator %---------------------------------------------------% RETURNS:% yfor = (nfor x neqs) matrix of levels forecasts for each equation %---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;% adjust nobs to feed the lagsnmin = min(nobs,begf-1);nobse = nmin - nlag; if nargin == 10 % user supplied r-value % use johansen to determine ec variables % decrement r by 1 when calling johansen jres = johansen(y(1:nmin,:),0,nlag); % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r-error correction variables x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); elseif nargin == 9 % we have to determine r-value jres = johansen(y(1:nmin,:),0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs; if trstat(i,1) > tsignf(i,2) r = i; end; end; % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r error correction variables x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); else error('Wrong # of input arguments to recmf'); end; % adjust nvar for constant term and error correction termsk = neqs*nlag+nx+1;% call rvarb to get parameter estimatesif nx ~= 0bmat = rvarb(y(1:begf-1,:),nlag,w,freq,sig,tau,theta,x(1:begf-1,:));elsebmat = rvarb(y(1:begf-1,:),nlag,w,freq,sig,tau,theta);end;yfor = zeros(nfor,neqs);ylev = zeros(nfor,neqs); % given bmat values generate future% growth rate forecasts dy = growthr(y,freq);ylevf = zeros(nfor,neqs); % storage for level forecasts % 1-step-ahead forecast xtrunc = [dy(nmin-(nlag):nmin,:) zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0ecterm = y(begf-1,index)*ecvectors(:,1:r); % add ec variables xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat/100; % growth rate forecastylevf(1,i) = (1+yfor(1,i))*y(begf-freq,i); % construct level forecastsend;xnew = zeros(nlag+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nforxnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0 % add ec variables based on past level forecasts ecterm = ylevf(step-1,index)*ecvectors(:,1:r); xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat/100; if freq < step, % here we can use past level forecasts ylevf(step,:) = (1 + yfor(step,:)).*ylevf(step-freq,:); else % case of freq > step, use past actual levels ylevf(step,:) = (1 + yfor(step,:)).*y(begf+step-freq-1,:); end; % end of if freq <= stepend;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag; xnew(i,:) = yfor(cnt,:); cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0 % add ec variables based on past level forecasts ecterm = ylevf(step,index)*ecvectors(:,1:r); xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat/100; if freq < step+1, % here we can use past level forecasts ylevf(step+1,:) = (1 + yfor(step+1,:)).*ylevf(step+1-freq,:); else % case of freq > step, use past actual levels ylevf(step+1,:) = (1 + yfor(step+1,:)).*y(begf+step-freq,:); end; % end of if freq <= stepend;end; % end of if step end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -