⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 recm_g.m

📁 计量工具箱
💻 M
字号:
function results = recm_g(y,nlag,prior,ndraw,nomit,r)% PURPOSE: Gibbs sampling estimates for Bayesian error correction %          model using Random-walk averaging prior%          dy = A(L) DY  + E, E = N(0,sige*V), %          V = diag(v1,v2,...vn), rval/vi = ID chi(rval)/rval, rval = Gamma(m,k)%          c = R A(L) + U, U = N(0,Z), Random-walk averaging prior          %---------------------------------------------------% USAGE: result = recm_g(y,nlag,prior,ndraw,nomit,r) % WHERE:    y    = an (nobs x neqs) matrix of y-vectors in levels%           nlag = the lag length %          prior = a structure variable%               prior.rval, rval prior hyperparameter, default=4%               prior.m,    informative Gamma(m,k) prior on rval%               prior.k,    informative Gamma(m,k) prior on rval %               prior.w,    an (neqs x neqs) matrix containing prior means%                           (rows should sum to unity, see below)%               prior.freq = 1 for annual, 4 for quarterly, 12 for monthly%               prior.sig  = prior variance hyperparameter (see below)%               prior.tau  = prior variance hyperparameter (see below)%               prior.theta = prior variance hyperparameter (see below)             %          ndraw = # of draws%          nomit = # of initial draws omitted for burn-in       %           r    = # of cointegrating relations to use%                  (optional: this will be determined using%                  Johansen's trace test at 95%-level if left blank)                                      % priors for important variables:  N(w(i,j),sig) for 1st own lag%                                  N(  0 ,tau*sig/k) for lag k=2,...,nlag% priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 %                                   N(  0 ,theta*sig/k)    for lag k=2,...,nlag  % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant%  w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0                                              % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1  % ---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables% hence the need for a freq argument input.%        - constant term included automatically  %        - x-matrix of exogenous variables not allowed%        - error correction variables are automatically%          constructed using output from Johansen's ML-estimator % ---------------------------------------------------% RETURNS a structure% results.meth  = 'recm_g'% results.nobs  = nobs, # of observations% results.neqs  = neqs, # of equations% results.nlag  = nlag, # of lags% results.nvar  = nlag*neqs + r + 1, # of variables per equation% results.freq  = freq% results.coint = # of co-integrating relations (or r if input)% results.weight= prior means weight matrix% results.sig   = tightness hyperparameter% results.tau   = tau hyperparameter% results.theta = theta hyperparameter% results.ndraw = # of draws% results.nomit = # of draws omitted for burn-in% results.r     = rval hyperparameter% results.m     = m hyperparameter (if used)% results.k     = k hyperparameter (if used)% results.x     = cointegrating variables (nobs-freq,nx)% results.nx    = # of cointegrating variables% --- the following are referenced by equation # --- % results(eq).bdraw  = bhat draws (ndraws-nomit x nvar)% results(eq).sdraw  = sige draws (ndraws-nomit x 1)% results(eq).vmean  = mean of vi draws (nobs x 1)% results(eq).rdraw  = r draws if m,k used (ndraw-nomit x 1)% results(eq).y      = actual y-level values (nobs x 1)% results(eq).dy     = actual y-growth rate values (nobs-nlag-freq,1)% results(eq).time   = time in seconds taken for sampling%---------------------------------------------------    % SEE ALSO: becm_g, rvar_g, bvar_g, prt_varg %---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 6 % user is specifying the # of error correction terms to             % include -- get them using johansen() jres = johansen(y,0,nlag); % recover error correction vectors ecvectors = jres.evec;        index = jres.ind; % construct r-error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r);    [nobs2 nx] = size(x);   elseif nargin == 5 % we need to find r jres = johansen(y,0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs;  if trstat(i,1) > tsignf(i,2)   r = i;  end; end; % recover error correction vectors ecvectors = jres.evec;        index = jres.ind; % construct r error correction variablesif r > 0 x = mlag(y(:,index),1)*ecvectors(:,1:r);    [junk nx] = size(x);    end;else error('Wrong # of arguments to recm_g');end;% parse prior fieldnamesfields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf    if strcmp(fields{i},'rval')        rval = prior.rval;     elseif strcmp(fields{i},'m')        mm = prior.m;        kk = prior.k;        rval = gamm_rnd(1,1,mm,kk);    % initial value for rval    elseif strcmp(fields{i},'tau')        tau = prior.tau;    elseif strcmp(fields{i},'w')        w = prior.w;              [wchk1 wchk2] = size(w);       if (wchk1 ~= wchk2)        error('non-square w matrix in rvar_g');       elseif wchk1 > 1        if wchk1 ~= neqs        error('wrong size w matrix in rvar_g');        end;       end;    elseif strcmp(fields{i},'theta')        theta = prior.theta;       elseif strcmp(fields{i},'sig')        sig = prior.sig;     elseif strcmp(fields{i},'freq')        freq = prior.freq;             end;end;% pass on prior to rvar_g% call RVAR using co-integrating variables as x-matrix% call depends on whether we have an x-matrix or notif nx ~= 0 results = rvar_g(y,nlag,prior,ndraw,nomit,x);elseresults = rvar_g(y,nlag,prior,ndraw,nomit);end;results(1).meth = 'recm_g';results(1).coint = r;results(1).sig = sig;results(1).weight = w;results(1).tau = tau;results(1).theta = theta;results(1).index = index;results(1).ndraw = ndraw;results(1).nomit = nomit;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -