📄 recm_g.m
字号:
function results = recm_g(y,nlag,prior,ndraw,nomit,r)% PURPOSE: Gibbs sampling estimates for Bayesian error correction % model using Random-walk averaging prior% dy = A(L) DY + E, E = N(0,sige*V), % V = diag(v1,v2,...vn), rval/vi = ID chi(rval)/rval, rval = Gamma(m,k)% c = R A(L) + U, U = N(0,Z), Random-walk averaging prior %---------------------------------------------------% USAGE: result = recm_g(y,nlag,prior,ndraw,nomit,r) % WHERE: y = an (nobs x neqs) matrix of y-vectors in levels% nlag = the lag length % prior = a structure variable% prior.rval, rval prior hyperparameter, default=4% prior.m, informative Gamma(m,k) prior on rval% prior.k, informative Gamma(m,k) prior on rval % prior.w, an (neqs x neqs) matrix containing prior means% (rows should sum to unity, see below)% prior.freq = 1 for annual, 4 for quarterly, 12 for monthly% prior.sig = prior variance hyperparameter (see below)% prior.tau = prior variance hyperparameter (see below)% prior.theta = prior variance hyperparameter (see below) % ndraw = # of draws% nomit = # of initial draws omitted for burn-in % r = # of cointegrating relations to use% (optional: this will be determined using% Johansen's trace test at 95%-level if left blank) % priors for important variables: N(w(i,j),sig) for 1st own lag% N( 0 ,tau*sig/k) for lag k=2,...,nlag% priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 % N( 0 ,theta*sig/k) for lag k=2,...,nlag % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant% w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0 % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1 % ---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables% hence the need for a freq argument input.% - constant term included automatically % - x-matrix of exogenous variables not allowed% - error correction variables are automatically% constructed using output from Johansen's ML-estimator % ---------------------------------------------------% RETURNS a structure% results.meth = 'recm_g'% results.nobs = nobs, # of observations% results.neqs = neqs, # of equations% results.nlag = nlag, # of lags% results.nvar = nlag*neqs + r + 1, # of variables per equation% results.freq = freq% results.coint = # of co-integrating relations (or r if input)% results.weight= prior means weight matrix% results.sig = tightness hyperparameter% results.tau = tau hyperparameter% results.theta = theta hyperparameter% results.ndraw = # of draws% results.nomit = # of draws omitted for burn-in% results.r = rval hyperparameter% results.m = m hyperparameter (if used)% results.k = k hyperparameter (if used)% results.x = cointegrating variables (nobs-freq,nx)% results.nx = # of cointegrating variables% --- the following are referenced by equation # --- % results(eq).bdraw = bhat draws (ndraws-nomit x nvar)% results(eq).sdraw = sige draws (ndraws-nomit x 1)% results(eq).vmean = mean of vi draws (nobs x 1)% results(eq).rdraw = r draws if m,k used (ndraw-nomit x 1)% results(eq).y = actual y-level values (nobs x 1)% results(eq).dy = actual y-growth rate values (nobs-nlag-freq,1)% results(eq).time = time in seconds taken for sampling%--------------------------------------------------- % SEE ALSO: becm_g, rvar_g, bvar_g, prt_varg %---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 6 % user is specifying the # of error correction terms to % include -- get them using johansen() jres = johansen(y,0,nlag); % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r-error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); elseif nargin == 5 % we need to find r jres = johansen(y,0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs; if trstat(i,1) > tsignf(i,2) r = i; end; end; % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r error correction variablesif r > 0 x = mlag(y(:,index),1)*ecvectors(:,1:r); [junk nx] = size(x); end;else error('Wrong # of arguments to recm_g');end;% parse prior fieldnamesfields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf if strcmp(fields{i},'rval') rval = prior.rval; elseif strcmp(fields{i},'m') mm = prior.m; kk = prior.k; rval = gamm_rnd(1,1,mm,kk); % initial value for rval elseif strcmp(fields{i},'tau') tau = prior.tau; elseif strcmp(fields{i},'w') w = prior.w; [wchk1 wchk2] = size(w); if (wchk1 ~= wchk2) error('non-square w matrix in rvar_g'); elseif wchk1 > 1 if wchk1 ~= neqs error('wrong size w matrix in rvar_g'); end; end; elseif strcmp(fields{i},'theta') theta = prior.theta; elseif strcmp(fields{i},'sig') sig = prior.sig; elseif strcmp(fields{i},'freq') freq = prior.freq; end;end;% pass on prior to rvar_g% call RVAR using co-integrating variables as x-matrix% call depends on whether we have an x-matrix or notif nx ~= 0 results = rvar_g(y,nlag,prior,ndraw,nomit,x);elseresults = rvar_g(y,nlag,prior,ndraw,nomit);end;results(1).meth = 'recm_g';results(1).coint = r;results(1).sig = sig;results(1).weight = w;results(1).tau = tau;results(1).theta = theta;results(1).index = index;results(1).ndraw = ndraw;results(1).nomit = nomit;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -