⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 recm.m

📁 计量工具箱
💻 M
字号:
function results = recm(y,nlag,w,freq,sig,tau,theta,r)% PURPOSE: performs Bayesian error correction model estimation%          using Random-walk averaging prior%---------------------------------------------------% USAGE: result = recm(y,nlag,w,freq,sig,tau,theta,r) % where:    y    = an (nobs x neqs) matrix of y-vectors in levels%           nlag = the lag length    %           w    = an (neqs x neqs) matrix containing prior means%                  (rows should sum to unity, see below)%           freq = 1 for annual, 4 for quarterly, 12 for monthly%           sig  = prior variance hyperparameter (see below)%           tau  = prior variance hyperparameter (see below)%          theta = prior variance hyperparameter (see below)%           x    = an (nobs x nx) matrix of deterministic variables%                  (in any form, they are not altered during estimation)%                  (constant term automatically included)%           r    = # of cointegrating relations to use%                  (optional: this will be determined using%                  Johansen's trace test at 95%-level if left blank)                                      % priors for important variables:  N(w(i,j),sig) for 1st own lag%                                  N(  0 ,tau*sig/k) for lag k=2,...,nlag% priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 %                                   N(  0 ,theta*sig/k)    for lag k=2,...,nlag  % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant%  w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0                                              % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1  % ---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables% hence the need for a freq argument input.%        - constant term included automatically  %        - x-matrix of exogenous variables not allowed%        - error correction variables are automatically%          constructed using output from Johansen's ML-estimator % ---------------------------------------------------% RETURNS a structure% results.meth  = 'recm'% results.nobs  = nobs, # of observations% results.neqs  = neqs, # of equations% results.nlag  = nlag, # of lags% results.nvar  = nlag*neqs+nx+1, # of variables per equation% results.coint = # of co-integrating relations (or r if input)% results.weight= weight matrix% results.sig   = tightness hyperparameter% results.tau   = tau hyperparameter% results.theta = theta hyperparameter% --- the following are referenced by equation # --- % results(eq).beta   = bhat for equation eq (includes ec-bhats)% results(eq).tstat  = t-statistics % results(eq).tprob  = t-probabilities% results(eq).resid  = residuals % results(eq).yhat   = predicted values (levels) (nlag+freq+1:nobs,1)% results(eq).dyhat  = predicted values (growth rates) (nlag+freq+1:nobs,1)% results(eq).y      = actual y-level values (nobs x 1)% results(eq).dy     = actual y-growth rate values (nlag+freq+1:nobs,1)% results(eq).sige   = e'e/(n-k)% results(eq).rsqr   = r-squared% results(eq).rbar   = r-squared adjusted%---------------------------------------------------    % SEE ALSO: recmf, becm, prt_var %---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 8 % user is specifying the # of error correction terms to             % include -- get them using johansen() jres = johansen(y,0,nlag); % recover error correction vectors ecvectors = jres.evec;        index = jres.ind; % construct r-error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r);    [nobs2 nx] = size(x);   elseif nargin == 7 % we need to find r jres = johansen(y,0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs;  if trstat(i,1) > tsignf(i,2)   r = i;  end; end; % recover error correction vectors ecvectors = jres.evec;        index = jres.ind; % construct r error correction variablesif r > 0 x = mlag(y(:,index),1)*ecvectors(:,1:r);    [junk nx] = size(x);    end;else error('Wrong # of arguments to recm');end;% call RVAR using co-integrating variables as x-matrix% call depends on whether we have an x-matrix or notif nx ~= 0 results = rvar(y,nlag,w,freq,sig,tau,theta,x);elseresults = rvar(y,nlag,w,freq,sig,tau,theta);end;results(1).meth = 'recm';results(1).coint = r;results(1).sig = sig;results(1).weight = w;results(1).tau = tau;results(1).theta = theta;results(1).index = index;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -