📄 recm.m
字号:
function results = recm(y,nlag,w,freq,sig,tau,theta,r)% PURPOSE: performs Bayesian error correction model estimation% using Random-walk averaging prior%---------------------------------------------------% USAGE: result = recm(y,nlag,w,freq,sig,tau,theta,r) % where: y = an (nobs x neqs) matrix of y-vectors in levels% nlag = the lag length % w = an (neqs x neqs) matrix containing prior means% (rows should sum to unity, see below)% freq = 1 for annual, 4 for quarterly, 12 for monthly% sig = prior variance hyperparameter (see below)% tau = prior variance hyperparameter (see below)% theta = prior variance hyperparameter (see below)% x = an (nobs x nx) matrix of deterministic variables% (in any form, they are not altered during estimation)% (constant term automatically included)% r = # of cointegrating relations to use% (optional: this will be determined using% Johansen's trace test at 95%-level if left blank) % priors for important variables: N(w(i,j),sig) for 1st own lag% N( 0 ,tau*sig/k) for lag k=2,...,nlag% priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 % N( 0 ,theta*sig/k) for lag k=2,...,nlag % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant% w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0 % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1 % ---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables% hence the need for a freq argument input.% - constant term included automatically % - x-matrix of exogenous variables not allowed% - error correction variables are automatically% constructed using output from Johansen's ML-estimator % ---------------------------------------------------% RETURNS a structure% results.meth = 'recm'% results.nobs = nobs, # of observations% results.neqs = neqs, # of equations% results.nlag = nlag, # of lags% results.nvar = nlag*neqs+nx+1, # of variables per equation% results.coint = # of co-integrating relations (or r if input)% results.weight= weight matrix% results.sig = tightness hyperparameter% results.tau = tau hyperparameter% results.theta = theta hyperparameter% --- the following are referenced by equation # --- % results(eq).beta = bhat for equation eq (includes ec-bhats)% results(eq).tstat = t-statistics % results(eq).tprob = t-probabilities% results(eq).resid = residuals % results(eq).yhat = predicted values (levels) (nlag+freq+1:nobs,1)% results(eq).dyhat = predicted values (growth rates) (nlag+freq+1:nobs,1)% results(eq).y = actual y-level values (nobs x 1)% results(eq).dy = actual y-growth rate values (nlag+freq+1:nobs,1)% results(eq).sige = e'e/(n-k)% results(eq).rsqr = r-squared% results(eq).rbar = r-squared adjusted%--------------------------------------------------- % SEE ALSO: recmf, becm, prt_var %---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 8 % user is specifying the # of error correction terms to % include -- get them using johansen() jres = johansen(y,0,nlag); % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r-error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); elseif nargin == 7 % we need to find r jres = johansen(y,0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs; if trstat(i,1) > tsignf(i,2) r = i; end; end; % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r error correction variablesif r > 0 x = mlag(y(:,index),1)*ecvectors(:,1:r); [junk nx] = size(x); end;else error('Wrong # of arguments to recm');end;% call RVAR using co-integrating variables as x-matrix% call depends on whether we have an x-matrix or notif nx ~= 0 results = rvar(y,nlag,w,freq,sig,tau,theta,x);elseresults = rvar(y,nlag,w,freq,sig,tau,theta);end;results(1).meth = 'recm';results(1).coint = r;results(1).sig = sig;results(1).weight = w;results(1).tau = tau;results(1).theta = theta;results(1).index = index;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -