📄 bvarf_g.m
字号:
function ylevf = bvarf_g(y,nlag,nfor,begf,prior,ndraw,nomit,x,transf);% PURPOSE: Gibbs sampling forecasts for Bayesian vector % autoregressive model using Minnesota-type prior% y = A(L) Y + X B + E, E = N(0,sige*V), % V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)% c = R A(L) + U, U = N(0,Z), Minnesota prior% diffuse prior on B is used%---------------------------------------------------% USAGE: yfor = bvarf_g(y,nlag,nfor,begf,prior,ndraw,nomit,x,transf)% where: y = an (nobs x neqs) matrix of y-vectors% nlag = the lag length% nfor = the forecast horizon% begf = the beginning date of the forecast % prior = a structure variable% prior.tight, Litterman's tightness hyperparameter% prior.weight, Litterman's weight (matrix or scalar)% prior.decay, Litterman's lag decay = lag^(-decay) % prior.rval, r prior hyperparameter, default=4% prior.m, informative Gamma(m,k) prior on r% prior.k, informative Gamma(m,k) prior on r % ndraw = # of draws% nomit = # of initial draws omitted for burn-in % x = an optional (nobs x nx) matrix of variables% transf = 0, no data transformation% = 1, 1st differences used to estimate the model% = freq, seasonal differences used to estimate% = cal-structure growth rates used to estimate% e.g., cal(1982,1,12) [see cal() function] %---------------------------------------------------------------% NOTE: - use bvarf_g(y,nlag,nfor,begf,prior,ndraw,nomit,[],transf)% for a transformation model with no x's (deterministic variables)% - includes constant term automatically%--------------------------------------------------------------- % RETURNS:% yfor = an nfor x neqs matrix of level forecasts for each equation%---------------------------------------------------------------% SEE ALSO: bvar_g, becmf_g, recmf_g, rvarf_g%--------------------------------------------------------------- % REFERENCES: LeSage, J.P. Applied Econometrics using MATLAB%---------------------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);% error checking on inputif ~isstruct(prior) error('bvarf_g: must supply the prior as a structure variable');elseif nargin == 9 % user wants us to transform the data[nobs2 nx] = size(x); if isstruct(transf) % a growth rates transform tform = 2; freq = transf.freq; elseif transf == 0 % no transform tform = 0; freq = 0; elseif transf == 1 % 1st difference transform tform = 1; freq = 0; elseif (transf == 1) | (transf == 4) | (transf == 12) tform = 3; % seasonal differences transform freq = transf; end;elseif nargin == 8[nobs2 nx] = size(x)tform = 0;freq = 0;elseif nargin == 7nx = 0;tform = 0;freq = 0;elseerror('Wrong # of arguments to bvarf_g');end; fields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf if strcmp(fields{i},'rval') rval = prior.rval; elseif strcmp(fields{i},'m') mm = prior.m; kk = prior.k; rval = gamm_rnd(1,1,mm,kk); % initial value for rval elseif strcmp(fields{i},'tight') tight = prior.tight; if tight < 0.01 warning('Tightness less than 0.01 in bvarf_g'); elseif tight > 1.0 warning('Tightness greater than unity in bvarf_g'); end; elseif strcmp(fields{i},'weight') weight = prior.weight; [wchk1 wchk2] = size(weight); if (wchk1 ~= wchk2) error('non-square weight matrix in bvarf_g'); elseif wchk1 > 1 if wchk1 ~= neqs error('wrong size weight matrix in bvarf_g'); end; end; elseif strcmp(fields{i},'decay') decay = prior.decay; if decay < 0 error('Negative lag decay in bvarf_g'); end; end;end;if nlag < 1error('Lag length less than 1 in bvarf_g');end;% flag an error where x-variables exist but not enough forecast values% are supplied for these variablesif nx > 0 if nobs2 < begf-1+nfor error('bvarf: not enough observations in x to forecast'); end;end;[nobs neqs] = size(y);% adjust nobs to feed the lagsnmin = min(nobs,begf-1);% nvar adjusted for constant term and deterministic variablesk = neqs*nlag + nx + 1;ndiff = 0;% adjust nobs to feed the lagsnobse = nobs - nlag;% nvar adjusted for constant termk = neqs*nlag + 1 + nx;nvar = k;switch tformcase 1 % 1st differences transform% transform datady = y - mlag(y,1);case 2 % growth rates transformation% transform datady = growthr(y,freq);case 3 % seasonal differences transform% transform datady = y - lag(y,freq);otherwise % case of no transformationdy = y;end; % end of data transformation cases% truncate to account for transformationfor j=1:neqs;yvec(:,j) = dy(nlag+freq+ndiff+1:nmin,j);end;% call bvar_g with transformed data in dy(1:nmin,:) and prior informationif nx > 0result = bvar_g(yvec,nlag,ndraw,nomit,prior,x);elseresult = bvar_g(yvec,nlag,ndraw,nomit,prior);end;% all we really care about is:% results(eq).bdraw = bhat draws for equation eqfor j=1:neqs;b = mean(result(j).bdraw);bmat(:,j) = b';end;% given bmat values generate future forecasts % These may be levels, 1st-differences, growth rates or seas diff's% we worry transforming back to levels later % 1-step-ahead forecast xtrunc = [dy(nmin-nlag:nmin,:) zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat;end;xnew = zeros(nlag+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nfor;xnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf+step-1,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat;end;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag; xnew(i,:) = yfor(cnt,:); cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf+step,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat;end;end;end; % we now worry about transforming the forecasts back% to levelsswitch tformcase 1 % 1st differences forecasts% convert 1st difference forecasts to levelsylevf = zeros(nfor,neqs);% 1-step-ahead forecastylevf(1,:) = yfor(1,:) + y(begf-1,:); % add change to actual from time t;% 2-nfor-step-ahead forecastsfor i=2:nfor % ylevf(i,:) = yfor(i,:) + ylevf(i-1,:);end;% end of 1st differences casecase 2 % growth rates forecasts% convert growth rate forecasts to levelsylevf = zeros(nfor,neqs);yfor = yfor/100;for step=1:nfor;if freq < step, % here we can use past level forecasts ylevf(step,:) = (1 + yfor(step,:)).*ylevf(step-freq,:);else % case of freq > step, use past actual levels ylevf(step,:) = (1 + yfor(step,:)).*y(begf+step-freq-1,:);end; % end of if freq <= stepend; % end of for step loopcase 3 % seasonal difference forecasts% convert seasonal difference forecasts to levelsfor step=1:nfor;if freq < step, % here we use past level forecasts ylevf(step,:) = yfor(step,:) + ylevf(step-freq,:);else % case of freq > step, use past actual levels ylevf(step,:) = yfor(step,:) + y(begf+step-freq-1,:);end; % end of if freq <= stepend; % end of for step loopotherwise % no transformation, so we have level forecasts alreadyylevf = yfor;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -