📄 rvarf.m
字号:
function ylevf = rvarf(y,nlag,w,freq,nfor,begf,sig,tau,theta,x);% PURPOSE: Estimates a Bayesian autoregressive model of order n% using Random-Walk averaging prior and produces f-step-ahead forecasts.%---------------------------------------------------% USAGE: ylevf = rvarf(y,nlag,w,freq,nfor,begf,sig,tau,theta,x)% where: y = an (nobs x neqs) matrix of y-vectors in levels% nlag = the lag length% w = an (neqs x neqs) matrix containing prior means% (rows should sum to unity, see below)% freq = 1 for annual, 4 for quarterly, 12 for monthly% sig = prior variance hyperparameter (see below)% tau = prior variance hyperparameter (see below)% theta = prior variance hyperparameter (see below)% x = an (nobs x nx) matrix of deterministic variables% (in any form, they are not altered during estimation)% (constant term automatically included)% nfor = the forecast horizon% begf = the beginning date of the forecast% % priors for important variables: N(w(i,j),sig) for 1st own lag% N( 0 ,tau*sig/k) for lag k=2,...,nlag% % priors for unimportant variables are: N(w(i,j) ,theta*sig/k) for lag k % % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant% w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0% % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1 %%---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % hence the need for a freq argument input.% the prior means rely on common (growth-rate) scaling of variables % - constant term included automatically %---------------------------------------------------% RETURNS:% ylevf(1:nfor,1:neqs) = y-forecasts for each equation in levels %---------------------------------------------------% SEE ALSO: varf, bvarf, ecmf, recmf%---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 10 % user is specifying deterministic variables [nobs2 nx] = size(x);elseif nargin == 9 % no deterministic variablesnx = 0;else error('Wrong # of arguments to rvarf');end;% adjust nobs to feed the lagsnmin = min(nobs,begf-1);nobse = nmin - nlag;% call rvarb to get parameter estimatesif nx ~= 0bmat = rvarb(y(1:begf-1,:),nlag,w,freq,sig,tau,theta,x(1:begf-1,:));elsebmat = rvarb(y(1:begf-1,:),nlag,w,freq,sig,tau,theta);end;yfor = zeros(nfor,neqs);ylev = zeros(nfor,neqs); % given bmat values generate future% growth rate forecasts dy = growthr(y,freq); % 1-step-ahead forecast xtrunc = [dy(nmin-(nlag):nmin,:) zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat; % growth rate forecastend;xnew = zeros(nlag+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nforxnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0 xvec = [xobs x(begf+step-1,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat;end;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag; xnew(i,:) = yfor(cnt,:); cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf+step,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat;end;end; % end of if step end;% convert growth rate forecasts to levelsylevf = zeros(nfor,neqs);yfor = yfor/100;for step=1:nfor;if freq < step, % here we can use past level forecasts ylevf(step,:) = (1 + yfor(step,:)).*ylevf(step-freq,:);else % case of freq > step, use past actual levels ylevf(step,:) = (1 + yfor(step,:)).*y(begf+step-freq-1,:);end; % end of if freq <= stepend; % end of for step loop
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -