⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ecmf.m

📁 计量工具箱
💻 M
字号:
function ylevf = ecmf(y,nlag,nfor,begf,r);% PURPOSE: estimates an error correction model of order n%          and produces f-step-ahead forecasts%-------------------------------------------------------------% USAGE:    yfor = ecmf(y,nlag,nfor,begf,r)% where:    y    = an (nobs x neqs) matrix of y-vectors in levels%           nlag = the lag length%           nfor = the forecast horizon%           begf = the beginning date of the forecast%                  (defaults to length(y) + 1)%              r = # of co-integrating relations to use%                  (optional: this will be determined using%                  Johansen's trace test at 95%-level if left blank)                                                 %-------------------------------------------------------------% NOTES: - constant vector automatically included%        - x-matrix of exogenous variables not allowed%        - error correction variables are automatically%          constructed using output from Johansen's ML-estimator               %---------------------------------------------------------------% RETURNS:%  yfor = an nfor x neqs matrix of level forecasts for each equation%-------------------------------------------------------------% SEE ALSO:  becmf, bvarf, varf, rvarf, recmf%-------------------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);% adjust nobs to feed the lagsnmin = min(nobs,begf-1);nobse = nmin - nlag;nx = 0;if nargin == 5 % user supplied r-value    % use johansen to determine ec variables    % decrement r by 1 when calling johansen    jres = johansen(y(1:nmin,:),0,nlag);    % recover error correction vectors    ecvectors = jres.evec;    index = jres.ind;     % construct r-error correction variables    x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r);     [nobs2 nx] = size(x);elseif nargin == 4 % we have to determine r-value    jres = johansen(y(1:nmin,:),0,nlag);    % find r = # significant co-integrating relations using    % the trace statistic output    trstat = jres.lr1;    tsignf = jres.cvt;    r = 0;    for i=1:neqs;        if trstat(i,1) > tsignf(i,2)            r = i;        end;    end;    % recover error correction vectors    ecvectors = jres.evec;    index = jres.ind;     % construct r error correction variables    x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r);     [nobs2 nx] = size(x); else    error('Wrong # of input arguments to ecmf');end;% adjust nvar for constant term and error correction termsk = neqs*nlag+nx+1;yvec = zeros(nobse,1);xvec = zeros(k,1);bhat = zeros(k,1);xmat = zeros(nobse,k);ymat = zeros(nobse,neqs);xnew = zeros(nlag+1,neqs);bmat = zeros(k,neqs);yfor = zeros(nfor,neqs);% truncate to begf-1 for estimationytrunc = y(1:nmin,:);% transform to 1st difference formdy = zeros(nmin,neqs);for i=1:neqs;    dy(:,i) = ytrunc(:,i) - lag(ytrunc(:,i),1);end;% generate lagged rhs matrixxlag = mlag(dy,nlag);% add constant and ec variables to x-matrix and feed lagsif nx == 0    xmat = [xlag(nlag+1:nmin,:) ones(nmin-nlag,1)];else    xmat = [xlag(nlag+1:nmin,:) x(nlag+1:nmin,:) ones(nmin-nlag,1)];end;% dimension some result matricesbmat = zeros(k,neqs);yfor = zeros(nfor,neqs);ylev = zeros(nfor,neqs);xlev = zeros(nfor,neqs);% save time by computing xpx only oncexpx = xmat'*xmat;% pull out each y-vector and run regressionsfor j=1:neqs;    yvec = dy(nlag+1:nmin,j);    bhat = (xpx)\(xmat'*yvec);        % save bhat    bmat(:,j) = bhat;end; % end of loop over equations % given bmat values generate future forecasts % 1-step-ahead forecast xtrunc = [dy(nmin-(nlag):nmin,:)    zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0    ecterm = y(begf-1,index)*ecvectors(:,1:r); % add ec variables     xvec = [xobs ecterm 1];else    xvec = [xobs 1];end;% loop over equationsfor i=1:neqs;    bhat = bmat(:,i);    yfor(1,i) = xvec*bhat; % NOTE this is a change forecast    ylev(1,i) = yfor(1,i) + y(nmin-1,i); % this adds the previous levelend;xnew = zeros(nlag+nx+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;        if step <= nfor;                xnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);        xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);        xnew(nlag+1,:) = zeros(1,neqs);                        xfor = mlag(xnew,nlag);        [xend junk] = size(xfor);        xobs = xfor(xend,:);        % construct ec terms based on levels forecast from previous periods        if nx > 0            ecterm = ylev(step-1,index)*ecvectors(:,1:r);            xvec = [xobs ecterm 1];        else            xvec = [xobs 1];        end;                        % loop over equations        for i=1:neqs;            bhat = bmat(:,i);            yfor(step,i) = xvec*bhat; % change forecast            ylev(step,i) = yfor(step,i) + ylev(step-1,i); % level forecast        end;            end;    end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;        if step <= nfor;                cnt = step-(nlag-1);                for i=1:nlag;            xnew(i,:) = yfor(cnt,:);            cnt = cnt+1;        end;                xfor = mlag(xnew,nlag);        [xend junk] = size(xfor);        xobs = xfor(xend,:);        % construct ec terms based on levels forecast from previous periods        if nx > 0            ecterm = ylev(step,index)*ecvectors(:,1:r);            xvec = [xobs ecterm 1];        else            xvec = [xobs 1];        end;                % loop over equations        for i=1:neqs;            bhat = bmat(:,i);            yfor(step+1,i) = xvec*bhat; % change forecast            ylev(step+1,i) = yfor(step+1,i) + ylev(step,i); % level forecast            %CRASHES IF nlag==1  :    ylev(step+1,i) = yfor(step+1,i) + ylev(step-1,i); % level forecast            % BDILLON CHANGED ylev(step-1 to ylev(step....        end;            end;    end;% convert 1st difference forecasts to levelsylevf = zeros(nfor,neqs);% 1-step-ahead forecastylevf(1,:) = yfor(1,:) + y(begf-1,:); % add change to actual from time t;% 2-nfor-step-ahead forecastsfor i=2:nfor %     ylevf(i,:) = yfor(i,:) + ylevf(i-1,:);end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -