📄 rvar.m
字号:
function results = rvar(y,nlag,w,freq,sig,tau,theta,x);% PURPOSE: Estimates a Bayesian vector autoregressive model % using the random-walk averaging prior %---------------------------------------------------% USAGE: result = rvar(y,nlag,w,freq,sig,tau,theta,x)% where: y = an (nobs x neqs) matrix of y-vectors (in levels)% nlag = the lag length% w = an (neqs x neqs) matrix containing prior means% (rows should sum to unity, see below)% freq = 1 for annual, 4 for quarterly, 12 for monthly% sig = prior variance hyperparameter (see below)% tau = prior variance hyperparameter (see below)% theta = prior variance hyperparameter (see below)% x = an (nobs x nx) matrix of deterministic variables% (in any form, they are not altered during estimation)% (constant term automatically included) % priors for important variables: N(w(i,j),sig) for 1st own lag% N( 0 ,tau*sig/k) for lag k=2,...,nlag % priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 % N( 0 ,theta*sig/k) for lag k=2,...,nlag % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant% w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0 % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1 %---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables% hence the need for a freq argument input.% - constant term included automatically %---------------------------------------------------% RETURNS: a structure% results.meth = 'rvar'% results.nobs = nobs, # of observations% results.neqs = neqs, # of equations% results.nlag = nlag, # of lags% results.nvar = nlag*neqs+nx+1, # of variables per equation% --- the following are referenced by equation # --- % results(eq).beta = bhat for equation eq % results(eq).tstat = t-statistics % results(eq).tprob = t-probabilities% results(eq).resid = residuals (for growth rates regression)% results(eq).yhat = predicted values (levels) (nlag+freq+1:nobs,1)% results(eq).dyhat = predicted values (growth rates) (nlag+freq+1:nobs,1)% results(eq).y = actual y-level values (nobs x 1)% results(eq).dy = actual y-growth rate values (nlag+freq+1:nobs,1)% results(eq).sige = e'e/(n-k) (for growth rates regression)% results(eq).rsqr = r-squared (for growth rates regression)% results(eq).rbar = r-squared adjusted (for growth rates regression)% --------------------------------------------------- % SEE ALSO: rvarf, var, bvar, ecm, becm, recm, prt_var % ---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);results.meth = 'rvar';results.sig = sig;results.tau = tau;results.theta = theta;results.nobs = nobs;results.neqs = neqs;results.nlag = nlag;results.weight = w;nx = 0;if nargin == 8 % user is specifying deterministic variables [nobs2 nx] = size(x); elseif nargin == 7 % no deterministic variablesnx = 0;else error('Wrong # of arguments to rvar');end;% transform y-levels to annualized growth ratesdy = growthr(y,freq);dy = trimr(dy,freq,0);% adjust nobs to account for seasonal differences and lagsnobse = nobs-freq-nlag;% nvar k = neqs*nlag+nx+1; nvar = k; results.nvar = nvar;y1 = mlag(dy,1);y1 = trimr(y1,nlag,0); % 1st own lags of the y-variablesxlag = nclag(dy,2,nlag); % lags 2 to nlag of the y-variablesxlag = trimr(xlag,nlag,0);if nx > 0x = trimr(x,nlag+freq,0); % truncate x variables for lags and diffsend;iota = ones(nobs,1);iota = trimr(iota,nlag+freq,0);dy = trimr(dy,nlag,0); % truncate to feed lags% form x-matrix of var plus deterministic variablesif nx ~= 0 xmat = [xlag x iota];elsexmat = [xlag iota];end;% form prior vector of means and matrix of variances% for autoregressive parameters% r = R beta + vmatR = zeros(k,k); % only fill in 1's for lags, leave determininistic % and constant term elements set to zerofor i=1:neqs*nlag R(i,i) = 1.0;end;for j=1:neqs; % ========> Equations loopr = zeros(k,1); % prior means vmat = eye(k)*100; % diffuse prior variance constant and deterministic% set prior means for first lags % using weight matrixfor icnt = 1:neqs; r(icnt,1) = w(j,icnt);end; % use prior mean of zero for lags 2 to nlag% plus deterministic variables and constant% already set by using r=zeros to start withfor ii=1:neqs; % prior std deviations for 1st lags if w(j,ii) ~= 0 vmat(ii,ii) = sig; else vmat(ii,ii) = theta*sig; end; end; cnt = neqs+1;for ii=1:neqs; % prior std deviations for lags 2 to nlag if w(j,ii) ~= 0 for kk=2:nlag; vmat(cnt,cnt) = tau*sig/kk; cnt = cnt + 1; end; else for kk=2:nlag; vmat(cnt,cnt) = theta*sig/kk; cnt = cnt + 1; end; end;end;yvec = dy(:,j);vmat = vmat.*vmat; res = theil(yvec,[y1 xmat],r,R,vmat);% rearrange bhat parameters, t-statistics, tprobs in var orderbmat = zeros(k,1);tmat = zeros(k,1);% =====> rearrange bhat parameters in var ordercnt = 1; for i=1:nlag:k; % fills in lag 1 parameters bmat(i,1) = res.beta(cnt,1); tmat(i,1) = res.tstat(cnt,1); cnt = cnt + 1; end;cnt = 2;lcnt = 2; for i=1:k-nx-1-neqs; % fills in lag 2 to nlag parameters bmat(cnt,1) = res.beta(neqs+i,1); tmat(cnt,1) = res.tstat(neqs+i,1); cnt = cnt+1; lcnt = lcnt +1; if lcnt == nlag+1; cnt = cnt + 1; lcnt = 2; end; end;for i=k-nx-1:k;bmat(i,1) = res.beta(i,1);tmat(i,1) = res.tstat(i,1);end;% find predicted values in levels formylag = lag(y(:,j),freq);ylag = trimr(ylag,freq+nlag,0);yhat = (iota + res.yhat).*ylag; % applied growth rate prediction to level % from last year % put results in structure variables results(j).beta = bmat; results(j).tstat = tmat; results(j).resid = res.resid; results(j).dyhat = res.yhat; results(j).yhat = yhat; results(j).y = y(:,j); results(j).dy = dy(:,j); results(j).sige = res.sige; results(j).rsqr = res.rsqr; results(j).rbar = res.rbar;end;% end of for j loop
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -