⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rvar.m

📁 计量工具箱
💻 M
字号:
function results = rvar(y,nlag,w,freq,sig,tau,theta,x);% PURPOSE: Estimates a Bayesian vector autoregressive model %          using the random-walk averaging prior %---------------------------------------------------% USAGE:  result = rvar(y,nlag,w,freq,sig,tau,theta,x)% where:    y    = an (nobs x neqs) matrix of y-vectors (in levels)%           nlag = the lag length%           w    = an (neqs x neqs) matrix containing prior means%                  (rows should sum to unity, see below)%           freq = 1 for annual, 4 for quarterly, 12 for monthly%           sig  = prior variance hyperparameter (see below)%           tau  = prior variance hyperparameter (see below)%          theta = prior variance hyperparameter (see below)%           x    = an (nobs x nx) matrix of deterministic variables%                  (in any form, they are not altered during estimation)%                  (constant term automatically included)                  % priors for important variables:  N(w(i,j),sig) for 1st own lag%                                  N(  0 ,tau*sig/k) for lag k=2,...,nlag               % priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 %                                   N(  0 ,theta*sig/k)    for lag k=2,...,nlag  % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant%  w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0                                              % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1  %---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables%          hence the need for a freq argument input.%        - constant term included automatically  %---------------------------------------------------% RETURNS: a structure% results.meth = 'rvar'% results.nobs = nobs, # of observations% results.neqs = neqs, # of equations% results.nlag = nlag, # of lags% results.nvar = nlag*neqs+nx+1, # of variables per equation% --- the following are referenced by equation # --- % results(eq).beta   = bhat for equation eq % results(eq).tstat  = t-statistics % results(eq).tprob  = t-probabilities% results(eq).resid  = residuals (for growth rates regression)% results(eq).yhat   = predicted values (levels) (nlag+freq+1:nobs,1)% results(eq).dyhat  = predicted values (growth rates) (nlag+freq+1:nobs,1)% results(eq).y      = actual y-level values (nobs x 1)% results(eq).dy     = actual y-growth rate values (nlag+freq+1:nobs,1)% results(eq).sige   = e'e/(n-k) (for growth rates regression)% results(eq).rsqr   = r-squared (for growth rates regression)% results(eq).rbar   = r-squared adjusted (for growth rates regression)% ---------------------------------------------------    % SEE ALSO: rvarf, var, bvar, ecm, becm, recm, prt_var % ---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);results.meth = 'rvar';results.sig = sig;results.tau = tau;results.theta = theta;results.nobs = nobs;results.neqs = neqs;results.nlag = nlag;results.weight = w;nx = 0;if nargin == 8 % user is specifying deterministic variables   [nobs2 nx] = size(x);   elseif nargin == 7 % no deterministic variablesnx = 0;else error('Wrong # of arguments to rvar');end;% transform y-levels to annualized growth ratesdy = growthr(y,freq);dy = trimr(dy,freq,0);% adjust nobs to account for seasonal differences and lagsnobse = nobs-freq-nlag;% nvar  k = neqs*nlag+nx+1; nvar = k; results.nvar = nvar;y1 = mlag(dy,1);y1 = trimr(y1,nlag,0);   % 1st own lags of the y-variablesxlag = nclag(dy,2,nlag); % lags 2 to nlag of the y-variablesxlag = trimr(xlag,nlag,0);if nx > 0x = trimr(x,nlag+freq,0); % truncate x variables for lags and diffsend;iota = ones(nobs,1);iota = trimr(iota,nlag+freq,0);dy = trimr(dy,nlag,0);    % truncate to feed lags% form x-matrix of var plus deterministic variablesif nx ~= 0 xmat = [xlag x iota];elsexmat = [xlag iota];end;% form prior vector of means and matrix of variances% for autoregressive parameters% r = R beta + vmatR = zeros(k,k);   % only fill in 1's for lags, leave determininistic % and constant term elements set to zerofor i=1:neqs*nlag R(i,i) = 1.0;end;for j=1:neqs;    % ========> Equations loopr = zeros(k,1);    % prior means vmat = eye(k)*100; % diffuse prior variance constant and deterministic% set prior means for first lags  % using weight matrixfor icnt = 1:neqs; r(icnt,1) = w(j,icnt);end;         % use prior mean of zero  for lags 2 to nlag% plus deterministic variables and constant% already set by using r=zeros to start withfor ii=1:neqs;   % prior std deviations for 1st lags if w(j,ii) ~= 0    vmat(ii,ii) = sig;    else    vmat(ii,ii) = theta*sig;    end;   end;   cnt = neqs+1;for ii=1:neqs;   % prior std deviations for lags 2 to nlag       if w(j,ii) ~= 0 for kk=2:nlag;    vmat(cnt,cnt) = tau*sig/kk;    cnt = cnt + 1;    end;       else for kk=2:nlag;    vmat(cnt,cnt) = theta*sig/kk;    cnt = cnt + 1;    end;              end;end;yvec = dy(:,j);vmat = vmat.*vmat;       res = theil(yvec,[y1 xmat],r,R,vmat);% rearrange bhat parameters, t-statistics, tprobs in var orderbmat = zeros(k,1);tmat = zeros(k,1);% =====> rearrange bhat parameters in var ordercnt = 1; for i=1:nlag:k; % fills in lag 1 parameters bmat(i,1) = res.beta(cnt,1); tmat(i,1) = res.tstat(cnt,1); cnt = cnt + 1; end;cnt = 2;lcnt = 2; for i=1:k-nx-1-neqs; % fills in lag 2 to nlag parameters bmat(cnt,1) = res.beta(neqs+i,1); tmat(cnt,1) = res.tstat(neqs+i,1); cnt = cnt+1; lcnt = lcnt +1;  if lcnt == nlag+1;  cnt = cnt + 1;  lcnt = 2;  end; end;for i=k-nx-1:k;bmat(i,1) = res.beta(i,1);tmat(i,1) = res.tstat(i,1);end;% find predicted values in levels formylag = lag(y(:,j),freq);ylag = trimr(ylag,freq+nlag,0);yhat = (iota + res.yhat).*ylag; % applied growth rate prediction to level                                % from last year  % put results in structure variables results(j).beta = bmat; results(j).tstat = tmat; results(j).resid = res.resid; results(j).dyhat = res.yhat;    results(j).yhat = yhat; results(j).y = y(:,j); results(j).dy = dy(:,j); results(j).sige = res.sige; results(j).rsqr = res.rsqr; results(j).rbar = res.rbar;end;% end of for j loop

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -