⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bvarf.m

📁 计量工具箱
💻 M
字号:
function ylevf = bvarf(y,nlag,nfor,begf,tight,weight,decay,x,transf);% PURPOSE: Estimates a Bayesian vector autoregression of order n%          and produces f-step-ahead forecasts (Minnesota prior)%---------------------------------------------------------------% USAGE: yfor = bvarf(y,nlag,nfor,begf,tight,weight,decay,x,transf)% where:    y    = an (nobs x neqs) matrix of y-vectors in levels%           nlag = the lag length%           nfor = the forecast horizon%           begf = the beginning date of the forecast%          tight = Litterman's tightness hyperparameter%         weight = Litterman's symmetric weight (scalar)%          decay = Litterman's lag decay = lag^(-decay) %           x    = an optional matrix of deterministic variables%         transf = 0, no data transformation%                = 1, 1st differences used to estimate the model%                = freq, seasonal differences used to estimate%                = cal-structure growth rates used to estimate%                  e.g., cal(1982,1,12) [see cal() function]    %---------------------------------------------------------------% NOTE: - use bvarf(y,nlag,nfor,begf,tight,weight,decay,[],transf)%         for a transformation model with no x's (deterministic variables)%       - includes constant term automatically%---------------------------------------------------------------% RETURNS:%  yfor = an nfor x neqs matrix of level forecasts for each equation%---------------------------------------------------------------% SEE ALSO: bvar, plt_var, prt_var%---------------------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.eduif nargin == 9 % user wants us to transform the data[nobs2 nx] = size(x); if isstruct(transf) % a growth rates transform   tform = 2;   freq = transf.freq;   elseif transf == 0  % no transform   tform = 0;   freq = 0;   elseif transf == 1  % 1st difference transform   tform = 1;   freq = 0;   elseif (transf == 1) | (transf == 4) | (transf == 12)   tform = 3;          % seasonal differences transform   freq = transf;   end;elseif nargin == 8[nobs2 nx] = size(x);tform = 0;freq = 0;elseif nargin == 7nx = 0;tform = 0;freq = 0;elseerror('Wrong # of arguments to bvarf');end;% flag an error where x-variables exist but not enough forecast values% are supplied for these variablesif nx > 0   if nobs2 < begf-1+nfor   error('bvarf: not enough observations in x to forecast');   end;end;[nobs neqs] = size(y);% adjust nobs to feed the lagsnmin = min(nobs,begf-1);% error checking on inputsif nlag < 1error('Lag length less than 1 in bvarf');end;if nlag > nobserror('Lag length exceeds observations in bvarf');end;if tight < 0.01warning('Tightness less than 0.01 in bvarf');end;if tight > 1.0warning('Tightness greater than unity in bvarf');end;if decay < 0error('Negative lag decay in bvarf');end;[wchk1 wchk2] = size(weight);if (wchk1 ~= wchk2)  error('non-square weight matrix in bvarf');elseif wchk1 > 1 if wchk1 ~= neqs error('wrong size weight matrix in bvarf'); end;end;% check for zeros in weight matrixif wchk1 == 1  if weight == 0  error('bvarf: must have weight > 0');  end;elseif wchk1 > 1  zip = find(weight == 0); if length(zip) ~= 0 error('bvarf: must have weights > 0'); end;end;% nvar adjusted for constant term and deterministic variablesk = neqs*nlag + nx + 1;ndiff = 0;switch tformcase 1 % 1st differences transform% transform datady = y - mlag(y,1);ndiff = 1;% generate lagged rhs matrixxlag = mlag(dy,nlag);% constant termiota = ones(nobs,1);% truncate variables to feed lags and 1st diff and end at begf-1iota = trimr(iota,nlag+1,nobs-begf+1);dys =  trimr(dy,nlag+1,nobs-begf+1);xlag = trimr(xlag,nlag+1,nobs-begf+1);% add x-matrix and constant to x-matrixif nx > 0xmat = [xlag x(nlag+2:nmin,:) iota];elsexmat = [xlag iota];end;% end of 1st difference transformation casecase 2 % growth rates transformation% transform datady = growthr(y,freq);% generate lagged rhs matrixxlag = mlag(dy,nlag);% constant termiota = ones(nobs,1);% truncate variables to feed lags and freq diff's and end at begf-1iota = trimr(iota,nlag+freq,nobs-begf+1);dys = trimr(dy,nlag+freq,nobs-begf+1);xlag = trimr(xlag,nlag+freq,nobs-begf+1);% add x-matrix and constant to x-matrixif nx > 0xmat = [xlag x(nlag+freq+1:nmin,:) iota];elsexmat = [xlag iota];end;% end of growth-rates transform casecase 3 % seasonal differences transform% transform datady = y - lag(y,freq);% generate lagged rhs matrixxlag = mlag(dy,nlag);% constant termiota = ones(nobs,1);% truncate variables to feed lags and freq diff's and end at begf-1iota = trimr(iota,nlag+freq,nobs-begf+1);dys = trimr(dy,nlag+freq,nobs-begf+1);xlag = trimr(xlag,nlag+freq,nobs-begf+1);% add x-matrix and constant to x-matrixif nx > 0xmat = [xlag x(nlag+freq+1:nmin,:) iota];elsexmat = [xlag iota];end;otherwise  % case of no transformation% generate lagged rhs matrixxlag = mlag(y,nlag);% constant termiota = ones(nobs,1);% truncate to feed lags and to end at begf-1 for estimationdys  = trimr(y,nlag,nobs-begf+1);dy   = y;xlag = trimr(xlag,nlag,nobs-begf+1);iota = trimr(iota,nlag,nobs-begf+1);% add x-matrix and constant to x-matrixif nx > 0xmat = [xlag x(nlag+1:nmin,:) iota];elsexmat = [xlag iota];end;end; % end of data transformation cases% do scaling here % determine scale factors using univariate AR model% Doan uses the full vector whereas we truncate the% first lags, so we will get slightly difference estimatesscale = zeros(neqs,1);scale2 = zeros(neqs,neqs);ytmp = zeros(nmin,1);for j=1:neqs ytmp = dy(freq+ndiff+1:nmin,j); scale(j,1) = scstd(ytmp,length(ytmp),nlag);end;for j=1:neqs; for i=1:neqs; scale2(i,j) = scale(j)/scale(i); end;end;% form xpx only once to save timexpx = xmat'*xmat;% pull out each y-vector and run regressionsfor j=1:neqs;yvec = dy(nlag+freq+ndiff+1:nmin,j);xpy = xmat'*yvec;reslt = theilbf(xpy,xpx,nlag,neqs,j,tight,weight,decay,scale2,scale,nx);bmat(:,j) = reslt.beta;end;% given bmat values generate future forecasts % These may be levels, 1st-differences, growth rates or seas diff's% we worry transforming back to levels later    % 1-step-ahead forecast xtrunc = [dy(nmin-nlag:nmin,:)          zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat;end;xnew = zeros(nlag+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nfor;xnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf+step-1,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat;end;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag;  xnew(i,:) = yfor(cnt,:);  cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf+step,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat;end;end;end;  % we now worry about transforming the forecasts back% to levelsswitch tformcase 1 % 1st differences forecasts% convert 1st difference forecasts to levelsylevf = zeros(nfor,neqs);% 1-step-ahead forecastylevf(1,:) = yfor(1,:) + y(begf-1,:); % add change to actual from time t;% 2-nfor-step-ahead forecastsfor i=2:nfor % ylevf(i,:) = yfor(i,:) + ylevf(i-1,:);end;% end of 1st differences casecase 2 % growth rates forecasts% convert growth rate forecasts to levelsylevf = zeros(nfor,neqs);yfor = yfor/100;for step=1:nfor;if freq < step, % here we can use past level forecasts   ylevf(step,:) = (1 + yfor(step,:)).*ylevf(step-freq,:);else % case of freq > step, use past actual levels   ylevf(step,:) = (1 + yfor(step,:)).*y(begf+step-freq-1,:);end; % end of if freq <= stepend; % end of for step loopcase 3 % seasonal difference forecasts% convert seasonal difference forecasts to levelsfor step=1:nfor;if freq < step, % here we use past level forecasts   ylevf(step,:) = yfor(step,:) + ylevf(step-freq,:);else % case of freq > step, use past actual levels   ylevf(step,:) = yfor(step,:) + y(begf+step-freq-1,:);end; % end of if freq <= stepend; % end of for step loopotherwise % no transformation, so we have level forecasts alreadyylevf = yfor;end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -