⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 recmf_gd.m

📁 计量工具箱
💻 M
字号:
% PURPOSE: An example of using recmf_g function%          to produce Gibbs forecasts for an ecm model                                                 %          (based on random-walk averaging prior) %              % References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''            %---------------------------------------------------% USAGE: recmf_gd%---------------------------------------------------load test.dat; % a test data set containing               % monthly mining employment for               % il,in,ky,mi,oh,pa,tn,wv% data covers 1982,1 to 1996,5dates = cal(1982,1,12);vnames = strvcat('il','in','ky','mi','oh','pa','tn','wv');     y = test;[nobs neqs] = size(y);nlag = 2;  % number of lags in var-model% prior hyperparameters% priors for contiguous variables:  N(w(i,j),sig) for 1st own lag%                                  N(  0 ,tau*sig/k) for lag k=2,...,nlag%               % priors for non-contiguous variables are:  N(w(i,j) ,theta*sig/k) for lag k %  % e.g., if y1, y3, y4 are contiguous variables in eq#1, y2 non-contiguous%  w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0%                                              % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1  sig = 0.1;tau = 6;theta = 0.5;freq = 12;   % monthly data% this is an example of using 1st-order contiguity% of the states as weights to produce prior meansW=[0      0.5    0.5    0     0     0    0     0   0.25   0      0.25   0.25  0.25  0    0     0   0.20   0.20   0      0     0.20  0    0.20  0.20   0      0.50   0      0     0.50  0    0     0   0      0.20   0.20   0.20  0     0.20 0.20  0.20   0      0      0      0     0.50  0    0     0.50   0      0      1      0     0     0    0     0   0      0      0.33   0     0.33  0.33 0     0];% estimate the modelprior.w = W;prior.sig = sig;prior.tau = tau;prior .theta = theta;prior.freq = 12;ndraw = 1100;nomit = 100;begf = ical(1995,1,dates);  % beginning forecast datenfor = 12;                  % # of forecastsendf = ical(1995,12,dates); % end forecast datesyfor1 = recmf(y,nlag,W,freq,nfor,begf,sig,tau,theta);% use default where Johansen ml estimates % for the co-integrating relations are determinedyfor2 = recmf_g(y,nlag,nfor,begf,prior,ndraw,nomit);rnames = 'Dates';for i=begf:endfrnames = strvcat(rnames,tsdate(dates,i));end;in.rnames = rnames;in.fmt = '%9.3f';in.cnames = vnames;fprintf(1,'recm forecasts \n');mprint(yfor1,in);fprintf(1,'recm Gibbs forecasts \n');mprint(yfor2,in);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -