⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ecm.m

📁 计量工具箱
💻 M
字号:
function results = ecm(y,nlag,r)% PURPOSE: performs error correction model estimation%---------------------------------------------------% USAGE: result = ecm(y,nlag,r) % where:    y    = an (nobs x neqs) matrix of y-vectors in levels%           nlag = the lag length%           r    = # of cointegrating relations to use%                  (optional: this will be determined using%                  Johansen's trace test at 95%-level if left blank)                                    % NOTES: constant vector automatically included%         x-matrix of exogenous variables not allowed%         error correction variables are automatically%         constructed using output from Johansen's ML-estimator %---------------------------------------------------% RETURNS a structure% results.meth = 'ecm'% results.nobs = nobs, # of observations% results.neqs = neqs, # of equations% results.nlag = nlag, # of lags% results.nvar = nlag*neqs+nx+1, # of variables per equation% results.coint= # of co-integrating relations (or r if input)% results.index= index of co-integrating variables ranked by%                size of eigenvalues large to small% --- the following are referenced by equation # --- % results(eq).beta   = bhat for equation eq (includes ec-bhats)% results(eq).tstat  = t-statistics % results(eq).tprob  = t-probabilities% results(eq).resid  = residuals % results(eq).yhat   = predicted values (levels) (nlag+2:nobs,1)% results(eq).dyhat  = predicted values (differenced) (nlag+2:nobs,1)% results(eq).y      = actual y-level values (nobs x 1)% results(eq).dy     = actual y-differenced values (nlag+2:nobs,1)% results(eq).sige   = e'e/(n-k)% results(eq).rsqr   = r-squared% results(eq).rbar   = r-squared adjusted% results(eq).ftest  = Granger F-tests% results(eq).fprob  = Granger marginal probabilities% ---------------------------------------------------    % SEE ALSO: ecmf, becm, recm, prt_var % ---------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 3 % user is specifying the # of error correction terms to             % include -- get them using johansen() jres = johansen(y,0,nlag); % recover error correction vectors ecvectors = jres.evec;   index = jres.ind; % construct r-error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r);    [nobs2 nx] = size(x);   elseif nargin == 2 % we need to find r jres = johansen(y,0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs;  if trstat(i,1) > tsignf(i,2)   r = i;  end; end; % recover error correction vectors ecvectors = jres.evec;   index = jres.ind; % construct r error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r);    [junk nx] = size(x);    else error('Wrong # of arguments to ecm');end;% nvar adjusted for constant term  k = neqs*nlag+nx+1; nvar = k;% transform to 1st difference formdy = tdiff(y,1);dy = trimr(dy,1,0); % account for differencingx = trimr(x,1,0);   % account for differencing% call VAR using 1st difference and co-integrating variables% call depends on whether we have an x-matrix or notif nx ~= 0 results = vare(dy,nlag,x);elseresults = vare(dy,nlag);end;for j=1:neqs;results(j).y = y(:,j);results(j).dy = dy(:,j);results(j).dyhat = results(j).yhat;% find predicted values in levels formylag = lag(y(:,j),1);ylag = trimr(ylag,nlag+1,0);yhat = results(j).yhat + ylag;results(j).yhat = yhat;end;results(1).meth = 'ecm';results(1).coint = r;results(1).index = index;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -