📄 recmf_g.m
字号:
function ylevf = recmf_g(y,nlag,nfor,begf,prior,ndraw,nomit,r)% PURPOSE: Gibbs sampling forecasts for Bayesian error correction % model using Random-walk averaging prior% dy = A(L) DY + E, E = N(0,sige*V), % V = diag(v1,v2,...vn), rval/vi = ID chi(rval)/rval, rval = Gamma(m,k)% c = R A(L) + U, U = N(0,Z), Random-walk averaging prior %---------------------------------------------------% USAGE: yfor = recmf_g(y,nlag,nfor,begf,prior,ndraw,nomit,r) % where: y = an (nobs x neqs) matrix of y-vectors in levels% nlag = the lag length % nfor = the forecast horizon% begf = the beginning date of the forecast % prior = a structure variable% prior.rval, rval prior hyperparameter, default=4% prior.m, informative Gamma(m,k) prior on rval% prior.k, informative Gamma(m,k) prior on rval % prior.w, an (neqs x neqs) matrix containing prior means% (rows should sum to unity, see below)% prior.freq = 1 for annual, 4 for quarterly, 12 for monthly% prior.sig = prior variance hyperparameter (see below)% prior.tau = prior variance hyperparameter (see below)% prior.theta = prior variance hyperparameter (see below) % ndraw = # of draws% nomit = # of initial draws omitted for burn-in % r = # of cointegrating relations to use% (optional: this will be determined using% Johansen's trace test at 95%-level if left blank) % priors for important variables: N(w(i,j),sig) for 1st own lag% N( 0 ,tau*sig/k) for lag k=2,...,nlag% priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 % N( 0 ,theta*sig/k) for lag k=2,...,nlag % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant% w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0 % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1 % ---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms because % the prior means rely on common (growth-rate) scaling of variables% hence the need for a freq argument input.% - constant term included automatically % - x-matrix of exogenous variables not allowed% - error correction variables are automatically% constructed using output from Johansen's ML-estimator % ---------------------------------------------------% RETURNS % yfor = an nfor x neqs matrix of level forecasts for each equation%--------------------------------------------------- % SEE ALSO: becmf_g, rvarf_g, bvarf_g, recm_g%---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);% find # observations up to forecast periodnmin = min(nobs,begf-1);nx = 0;if nargin == 8 % user is specifying the # of error correction terms to % include -- get them using johansen() jres = johansen(y,0,nlag); % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r-error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); elseif nargin == 7 % we need to find r jres = johansen(y,0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs; if trstat(i,1) > tsignf(i,2) r = i; end; end; % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r error correction variablesif r > 0 x = mlag(y(:,index),1)*ecvectors(:,1:r); [junk nx] = size(x); end;else error('Wrong # of arguments to recmf_g');end;% do error checking here, even though it is redundant since% recm_g will do the same error checking. BUT, we avoid% confusing the poor user who will get error messages from% this routine that he called, rather than recm_gfields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf if strcmp(fields{i},'rval') rval = prior.rval; elseif strcmp(fields{i},'m') mm = prior.m; kk = prior.k; rval = gamm_rnd(1,1,mm,kk); % initial value for rval elseif strcmp(fields{i},'tau') tau = prior.tau; elseif strcmp(fields{i},'w') w = prior.w; [wchk1 wchk2] = size(w); if (wchk1 ~= wchk2) error('non-square w matrix in recmf_g'); elseif wchk1 > 1 if wchk1 ~= neqs error('wrong size w matrix in recmf_g'); end; end; elseif strcmp(fields{i},'theta') theta = prior.theta; elseif strcmp(fields{i},'sig') sig = prior.sig; elseif strcmp(fields{i},'freq') freq = prior.freq; end;end;if nlag < 1error('Lag length less than 1 in recmf_g');end;% truncate to begf-1 for estimation ytrunc = y(1:nmin,:);% call rvar_g with input informationif r > 0result = recm_g(ytrunc,nlag,prior,ndraw,nomit,r);elseresult = recm_g(ytrunc,nlag,prior,ndraw,nomit);end;% all we really care about is:% result(eq).bdraw = bhat draws for equation eqfor j=1:neqs;b = mean(result(j).bdraw);bmat(:,j) = b';end;yfor = zeros(nfor,neqs);ylev = zeros(nfor,neqs); % given bmat values generate future% growth rate forecasts dy = growthr(y,freq);ylevf = zeros(nfor,neqs); % storage for level forecasts % 1-step-ahead forecast xtrunc = [dy(nmin-(nlag):nmin,:) zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0ecterm = y(begf-1,index)*ecvectors(:,1:r); % add ec variables xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat/100; % growth rate forecastylevf(1,i) = (1+yfor(1,i))*y(begf-freq,i); % construct level forecastsend;xnew = zeros(nlag+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nforxnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0 % add ec variables based on past level forecasts ecterm = ylevf(step-1,index)*ecvectors(:,1:r); xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat/100; if freq < step, % here we can use past level forecasts ylevf(step,:) = (1 + yfor(step,:)).*ylevf(step-freq,:); else % case of freq > step, use past actual levels ylevf(step,:) = (1 + yfor(step,:)).*y(begf+step-freq-1,:); end; % end of if freq <= stepend;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag; xnew(i,:) = yfor(cnt,:); cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0 % add ec variables based on past level forecasts ecterm = ylevf(step,index)*ecvectors(:,1:r); xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat/100; if freq < step+1, % here we can use past level forecasts ylevf(step+1,:) = (1 + yfor(step+1,:)).*ylevf(step+1-freq,:); else % case of freq > step, use past actual levels ylevf(step+1,:) = (1 + yfor(step+1,:)).*y(begf+step-freq,:); end; % end of if freq <= stepend;end; % end of if step end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -