📄 rvar_g.m
字号:
function results = rvar_g(y,nlag,prior,ndraw,nomit,x);% PURPOSE: Gibbs estimates for a Bayesian vector autoregressive % model using the random-walk averaging prior % y = A(L) Y + X B + E, E = N(0,sige*V), % V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)% c = R A(L) + U, U = N(0,Z), random-walk averaging prior% diffuse prior on B is used %---------------------------------------------------% USAGE: result = rvar_g(y,nlag,prior,ndraw,nomit,x)% where: y = an (nobs x neqs) matrix of y-vectors (in levels)% nlag = the lag length% prior = a structure variable% prior.rval, r prior hyperparameter, default=4% prior.m, informative Gamma(m,k) prior on r% prior.k, informative Gamma(m,k) prior on r % prior.w, an (neqs x neqs) matrix containing prior means% (rows should sum to unity, see below)% prior.freq = 1 for annual, 4 for quarterly, 12 for monthly% prior.sig = prior variance hyperparameter (see below)% prior.tau = prior variance hyperparameter (see below)% prior.theta = prior variance hyperparameter (see below) % ndraw = # of draws% nomit = # of initial draws omitted for burn-in % x = an (nobs x nx) matrix of deterministic variables% (in any form, they are not altered during estimation)% (constant term automatically included) % priors for important variables: N(w(i,j),sig) for 1st own lag% N( 0 ,tau*sig/k) for lag k=2,...,nlag % priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 % N( 0 ,theta*sig/k) for lag k=2,...,nlag % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant% w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0 % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1 %---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables% hence the need for a freq argument input.% - constant term included automatically %---------------------------------------------------% RETURNS: a structure% results.meth = 'rvar_g'% results.nobs = nobs, # of observations% results.nadj = nobs - nlag - freq% results.neqs = neqs, # of equations% results.nlag = nlag, # of lags% results.nvar = nlag*neqs+nx+1, # of variables per equation% results.freq = freq% results.r = rval hyperparameter % results.m = m hyperparameter (if used)% results.k = k hyperparameter (if used)% results.weight = prior means matrix% results.sig = prior hyperparameter% results.tau = prior hyperparameter% results.theta = prior hyperparameter% results.nx = # of deterministic variables% results.x = deterministic variables (nobs-freq,nx)% results.ndraw = # of draws% results.nomit = # of draws omitted for burn-in% --- the following are referenced by equation # --- % results(eq).bdraw = bhat draws (ndraws-nomit x nvar)% results(eq).sdraw = sige draws (ndraws-nomit x 1)% results(eq).vmean = mean of vi draws (nobs x 1)% results(eq).rdraw = r draws if m,k used (ndraw-nomit x 1)% results(eq).y = actual y-level values (nobs x 1)% results(eq).dy = actual y-growth rate values (nlag+freq+1:nobs,1)% results(eq).time = time in seconds taken for sampling% --------------------------------------------------- % SEE ALSO: bvar_g, becm_g, recm_g, prt, prt_varg % ---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 6 % user is specifying deterministic variables [nobs2 nx] = size(x); elseif nargin == 5 % no deterministic variablesnx = 0;else error('Wrong # of arguments to rvar_g');end;% parse prior parametersfields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf if strcmp(fields{i},'rval') rval = prior.rval; elseif strcmp(fields{i},'m') mm = prior.m; kk = prior.k; rval = gamm_rnd(1,1,mm,kk); % initial value for rval elseif strcmp(fields{i},'tau') tau = prior.tau; elseif strcmp(fields{i},'w') w = prior.w; [wchk1 wchk2] = size(w); if (wchk1 ~= wchk2) error('non-square w matrix in rvar_g'); elseif wchk1 > 1 if wchk1 ~= neqs error('wrong size w matrix in rvar_g'); end; end; elseif strcmp(fields{i},'theta') theta = prior.theta; elseif strcmp(fields{i},'sig') sig = prior.sig; elseif strcmp(fields{i},'freq') freq = prior.freq; end;end;results.meth = 'rvar_g';results.sig = sig;results.tau = tau;results.theta = theta;results.nobs = nobs;results.nadj = nobs-nlag-freq;results.neqs = neqs;results.nlag = nlag;results.weight = w;results.ndraw = ndraw;results.nomit = nomit;results.freq = freq;results.nx = nx;if nx > 0results.x = trimr(x,nlag+freq,0);end;if mm ~= 0 results.m = mm; results.k = kk;else results.r = rval;end;% transform y-levels to annualized growth ratesdy = growthr(y,freq);dy = trimr(dy,freq,0);% adjust nobs to account for seasonal differences and lagsnobse = nobs-freq-nlag;% nvar k = neqs*nlag+nx+1; nvar = k; results.nvar = nvar;y1 = mlag(dy,1);y1 = trimr(y1,nlag,0); % 1st own lags of the y-variablesxlag = nclag(dy,2,nlag); % lags 2 to nlag of the y-variablesxlag = trimr(xlag,nlag,0);if nx > 0x = trimr(x,nlag+freq,0); % truncate x variables for lags and diffsend;iota = ones(nobs,1);iota = trimr(iota,nlag+freq,0);dy = trimr(dy,nlag,0); % truncate to feed lags% form x-matrix of var plus deterministic variablesif nx ~= 0 xmat = [xlag x iota];elsexmat = [xlag iota];end;% form prior vector of means and matrix of variances% for autoregressive parameters% r = R beta + vmatR = zeros(k,k); % only fill in 1's for lags, leave determininistic % and constant term elements set to zerofor i=1:neqs*nlag R(i,i) = 1.0;end;for j=1:neqs; % ========> Equations loopr = zeros(k,1); % prior means vmat = eye(k)*100; % diffuse prior variance constant and deterministic% set prior means for first lags % using weight matrixfor icnt = 1:neqs; r(icnt,1) = w(j,icnt);end; % use prior mean of zero for lags 2 to nlag% plus deterministic variables and constant% already set by using r=zeros to start withfor ii=1:neqs; % prior std deviations for 1st lags if w(j,ii) ~= 0 vmat(ii,ii) = sig; else vmat(ii,ii) = theta*sig; end; end; cnt = neqs+1;for ii=1:neqs; % prior std deviations for lags 2 to nlag if w(j,ii) ~= 0 for kk=2:nlag; vmat(cnt,cnt) = tau*sig/kk; cnt = cnt + 1; end; else for kk=2:nlag; vmat(cnt,cnt) = theta*sig/kk; cnt = cnt + 1; end; end;end;yvec = dy(:,j);vmat = vmat.*vmat; % set up prior structure variable for theil_gtprior.beta = r;tprior.bcov = vmat;tprior.rmat = R;if mm ~= 0tprior.m = mm;tprior.k = kk;elsetprior.rval = rval;end;% default diffuse prior on sige used res = theil_g(yvec,[y1 xmat],tprior,ndraw,nomit);% rearrange bhat parameters, t-statistics, tprobs in var orderbmat = zeros(ndraw-nomit,k);% =====> rearrange bhat parameters in var ordercnt = 1; for i=1:nlag:k; % fills in lag 1 parameters bmat(:,i) = res.bdraw(:,cnt); cnt = cnt + 1; end;cnt = 2;lcnt = 2; for i=1:k-nx-1-neqs; % fills in lag 2 to nlag parameters bmat(:,cnt) = res.bdraw(:,neqs+i); cnt = cnt+1; lcnt = lcnt +1; if lcnt == nlag+1; cnt = cnt + 1; lcnt = 2; end; end;for i=k-nx-1:k;bmat(:,i) = res.bdraw(:,i);end;results(j).bdraw = bmat;results(j).y = y(:,j);results(j).dy = dy(:,j);results(j).rdraw = res.rdraw;results(j).sdraw = res.sdraw;results(j).vmean = res.vmean;results(j).time = res.time;end;% end of for j loop
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -