⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rvar_g.m

📁 计量工具箱
💻 M
字号:
function results = rvar_g(y,nlag,prior,ndraw,nomit,x);% PURPOSE: Gibbs estimates for a Bayesian vector autoregressive %          model using the random-walk averaging prior %          y = A(L) Y + X B + E, E = N(0,sige*V), %          V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)%          c = R A(L) + U, U = N(0,Z), random-walk averaging prior%          diffuse prior on B is used          %---------------------------------------------------% USAGE:  result = rvar_g(y,nlag,prior,ndraw,nomit,x)% where:    y    = an (nobs x neqs) matrix of y-vectors (in levels)%           nlag = the lag length%          prior = a structure variable%               prior.rval, r prior hyperparameter, default=4%               prior.m,    informative Gamma(m,k) prior on r%               prior.k,    informative Gamma(m,k) prior on r %               prior.w,    an (neqs x neqs) matrix containing prior means%                           (rows should sum to unity, see below)%               prior.freq = 1 for annual, 4 for quarterly, 12 for monthly%               prior.sig  = prior variance hyperparameter (see below)%               prior.tau  = prior variance hyperparameter (see below)%               prior.theta = prior variance hyperparameter (see below)                %          ndraw = # of draws%          nomit = # of initial draws omitted for burn-in                 %           x    = an (nobs x nx) matrix of deterministic variables%                  (in any form, they are not altered during estimation)%                  (constant term automatically included)                  % priors for important variables:  N(w(i,j),sig) for 1st own lag%                                  N(  0 ,tau*sig/k) for lag k=2,...,nlag               % priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 %                                   N(  0 ,theta*sig/k)    for lag k=2,...,nlag  % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant%  w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0                                              % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1  %---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables%          hence the need for a freq argument input.%        - constant term included automatically  %---------------------------------------------------% RETURNS: a structure% results.meth   = 'rvar_g'% results.nobs   = nobs, # of observations% results.nadj   = nobs - nlag - freq% results.neqs   = neqs, # of equations% results.nlag   = nlag, # of lags% results.nvar   = nlag*neqs+nx+1, # of variables per equation% results.freq   = freq% results.r      = rval hyperparameter % results.m      = m hyperparameter (if used)% results.k      = k hyperparameter (if used)% results.weight = prior means matrix% results.sig    = prior hyperparameter% results.tau    = prior hyperparameter% results.theta  = prior hyperparameter% results.nx     = # of deterministic variables% results.x      = deterministic variables (nobs-freq,nx)% results.ndraw  = # of draws% results.nomit  = # of draws omitted for burn-in% --- the following are referenced by equation # --- % results(eq).bdraw  = bhat draws (ndraws-nomit x nvar)% results(eq).sdraw  = sige draws (ndraws-nomit x 1)% results(eq).vmean  = mean of vi draws (nobs x 1)% results(eq).rdraw  = r draws if m,k used (ndraw-nomit x 1)% results(eq).y      = actual y-level values (nobs x 1)% results(eq).dy     = actual y-growth rate values (nlag+freq+1:nobs,1)% results(eq).time   = time in seconds taken for sampling% ---------------------------------------------------    % SEE ALSO: bvar_g, becm_g, recm_g, prt, prt_varg % ---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 6 % user is specifying deterministic variables   [nobs2 nx] = size(x);   elseif nargin == 5 % no deterministic variablesnx = 0;else error('Wrong # of arguments to rvar_g');end;% parse prior parametersfields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf    if strcmp(fields{i},'rval')        rval = prior.rval;     elseif strcmp(fields{i},'m')        mm = prior.m;        kk = prior.k;        rval = gamm_rnd(1,1,mm,kk);    % initial value for rval    elseif strcmp(fields{i},'tau')        tau = prior.tau;    elseif strcmp(fields{i},'w')        w = prior.w;              [wchk1 wchk2] = size(w);       if (wchk1 ~= wchk2)        error('non-square w matrix in rvar_g');       elseif wchk1 > 1        if wchk1 ~= neqs        error('wrong size w matrix in rvar_g');        end;       end;    elseif strcmp(fields{i},'theta')        theta = prior.theta;       elseif strcmp(fields{i},'sig')        sig = prior.sig;     elseif strcmp(fields{i},'freq')        freq = prior.freq;             end;end;results.meth = 'rvar_g';results.sig = sig;results.tau = tau;results.theta = theta;results.nobs = nobs;results.nadj = nobs-nlag-freq;results.neqs = neqs;results.nlag = nlag;results.weight = w;results.ndraw = ndraw;results.nomit = nomit;results.freq = freq;results.nx = nx;if nx > 0results.x = trimr(x,nlag+freq,0);end;if mm ~= 0    results.m = mm;    results.k = kk;else    results.r = rval;end;% transform y-levels to annualized growth ratesdy = growthr(y,freq);dy = trimr(dy,freq,0);% adjust nobs to account for seasonal differences and lagsnobse = nobs-freq-nlag;% nvar  k = neqs*nlag+nx+1; nvar = k; results.nvar = nvar;y1 = mlag(dy,1);y1 = trimr(y1,nlag,0);   % 1st own lags of the y-variablesxlag = nclag(dy,2,nlag); % lags 2 to nlag of the y-variablesxlag = trimr(xlag,nlag,0);if nx > 0x = trimr(x,nlag+freq,0); % truncate x variables for lags and diffsend;iota = ones(nobs,1);iota = trimr(iota,nlag+freq,0);dy = trimr(dy,nlag,0);    % truncate to feed lags% form x-matrix of var plus deterministic variablesif nx ~= 0 xmat = [xlag x iota];elsexmat = [xlag iota];end;% form prior vector of means and matrix of variances% for autoregressive parameters% r = R beta + vmatR = zeros(k,k);   % only fill in 1's for lags, leave determininistic % and constant term elements set to zerofor i=1:neqs*nlag R(i,i) = 1.0;end;for j=1:neqs;    % ========> Equations loopr = zeros(k,1);    % prior means vmat = eye(k)*100; % diffuse prior variance constant and deterministic% set prior means for first lags  % using weight matrixfor icnt = 1:neqs; r(icnt,1) = w(j,icnt);end;         % use prior mean of zero  for lags 2 to nlag% plus deterministic variables and constant% already set by using r=zeros to start withfor ii=1:neqs;   % prior std deviations for 1st lags if w(j,ii) ~= 0    vmat(ii,ii) = sig;    else    vmat(ii,ii) = theta*sig;    end;   end;   cnt = neqs+1;for ii=1:neqs;   % prior std deviations for lags 2 to nlag       if w(j,ii) ~= 0 for kk=2:nlag;    vmat(cnt,cnt) = tau*sig/kk;    cnt = cnt + 1;    end;       else for kk=2:nlag;    vmat(cnt,cnt) = theta*sig/kk;    cnt = cnt + 1;    end;              end;end;yvec = dy(:,j);vmat = vmat.*vmat;  % set up prior structure variable for theil_gtprior.beta = r;tprior.bcov = vmat;tprior.rmat = R;if mm ~= 0tprior.m = mm;tprior.k = kk;elsetprior.rval = rval;end;% default diffuse prior on sige used    res = theil_g(yvec,[y1 xmat],tprior,ndraw,nomit);% rearrange bhat parameters, t-statistics, tprobs in var orderbmat = zeros(ndraw-nomit,k);% =====> rearrange bhat parameters in var ordercnt = 1; for i=1:nlag:k; % fills in lag 1 parameters bmat(:,i) = res.bdraw(:,cnt); cnt = cnt + 1; end;cnt = 2;lcnt = 2; for i=1:k-nx-1-neqs; % fills in lag 2 to nlag parameters bmat(:,cnt) = res.bdraw(:,neqs+i); cnt = cnt+1; lcnt = lcnt +1;  if lcnt == nlag+1;  cnt = cnt + 1;  lcnt = 2;  end; end;for i=k-nx-1:k;bmat(:,i) = res.bdraw(:,i);end;results(j).bdraw = bmat;results(j).y = y(:,j);results(j).dy = dy(:,j);results(j).rdraw = res.rdraw;results(j).sdraw = res.sdraw;results(j).vmean = res.vmean;results(j).time = res.time;end;% end of for j loop

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -