⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rvarb.m

📁 计量工具箱
💻 M
字号:
function bmat = rvarb(y,nlag,w,freq,sig,tau,theta,x);% PURPOSE: Estimates a Bayesian vector autoregressive model %          using the random-walk averaging prior, returning %          bhat's only (for use in forecasting) %---------------------------------------------------% USAGE:  result = rvarb(y,nlag,w,freq,sig,tau,theta,x)% where:    y    = an (nobs x neqs) matrix of y-vectors (in levels)%           nlag = the lag length%           w    = an (neqs x neqs) matrix containing prior means%                  (rows should sum to unity, see below)%           freq = 1 for annual, 4 for quarterly, 12 for monthly%           sig  = prior variance hyperparameter (see below)%           tau  = prior variance hyperparameter (see below)%          theta = prior variance hyperparameter (see below)%           x    = an (nobs x nx) matrix of deterministic variables%                  (in any form, they are not altered during estimation)%                  (constant term automatically included)%                  % priors for important variables:  N(w(i,j),sig) for 1st own lag%                                  N(  0 ,tau*sig/k) for lag k=2,...,nlag%               % priors for unimportant variables are:  N(w(i,j) ,theta*sig/k) for lag k %  % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant%  w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0%                                              % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1  %---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms % because the prior means rely on common (growth-rate) scaling of variables%          hence the need for a freq argument input.%        - constant term included automatically  %---------------------------------------------------% RETURNS: bhat = a (neqs*nlag+nx+1 x neqs) matrix%---------------------------------------------------    % SEE ALSO: rvar, rvarf, recmf, prt_var %---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);nx = 0;if nargin == 8 % user is specifying deterministic variables   [nobs2 nx] = size(x);   elseif nargin == 7 % no deterministic variablesnx = 0;else error('Wrong # of arguments to rvarb');end;% transform y-levels to annualized growth ratesdy = growthr(y,freq);dy = trimr(dy,freq,0);% adjust nobs to account for seasonal differences and lagsnobse = nobs-freq-nlag;% nvar  k = neqs*nlag+nx+1; nvar = k; y1 = mlag(dy,1);y1 = trimr(y1,nlag,0);   % 1st own lags of the y-variablesxlag = nclag(dy,2,nlag); % lags 2 to nlag of the y-variablesxlag = trimr(xlag,nlag,0);if nx > 0x = trimr(x,nlag+freq,0); % truncate x variables for lags and diffsend;iota = ones(nobs,1);iota = trimr(iota,nlag+freq,0);dy = trimr(dy,nlag,0);    % truncate to feed lags% form x-matrix of var plus deterministic variablesif nx ~= 0 xmat = [xlag x iota];elsexmat = [xlag iota];end;bmat = zeros(k,neqs);for j=1:neqs;    % ========> Equations loopr = zeros(k,1);    % prior means vmat = eye(k)*100; % diffuse prior variance constant and deterministic% set prior means for first lags  % using weight matrixfor icnt = 1:neqs; r(icnt,1) = w(j,icnt);end;         % use prior mean of zero  for lags 2 to nlag% plus deterministic variables and constant% already set by using r=zeros to start withfor ii=1:neqs;   % prior std deviations for 1st lags if w(j,ii) ~= 0    vmat(ii,ii) = sig;    else    vmat(ii,ii) = theta*sig;    end;   end;   cnt = neqs+1;for ii=1:neqs;   % prior std deviations for lags 2 to nlag       if w(j,ii) ~= 0 for kk=2:nlag;    vmat(cnt,cnt) = tau*sig/kk;    cnt = cnt + 1;    end;       else for kk=2:nlag;    vmat(cnt,cnt) = theta*sig/kk;    cnt = cnt + 1;    end;              end;end;yvec = dy(:,j);vmat = vmat.*vmat;  xtmp = [y1 xmat];[nobs nvar] = size(xtmp);vi = inv(vmat);% do ols to get sige estimate;bols = inv(xtmp'*xtmp)*xtmp'*yvec;sige = ((yvec - xtmp*bols)'*(yvec-xtmp*bols))/(nobs-nvar);xpx = (1/sige)*(xtmp'*xtmp) + vi;xpy = (1/sige)*(xtmp'*yvec) + vi*r;xpxi = inv(xpx);beta = xpxi*xpy;% =====> rearrange bhat parameters in var ordercnt = 1; for i=1:nlag:k; % fills in lag 1 parameters bmat(i,j) = beta(cnt,1); cnt = cnt + 1; end;cnt = 2;lcnt = 2; for i=1:k-nx-1-neqs; % fills in lag 2 to nlag parameters bmat(cnt,j) = beta(neqs+i,1); cnt = cnt+1; lcnt = lcnt +1;  if lcnt == nlag+1;  cnt = cnt + 1;  lcnt = 2;  end; end;for i=k-nx-1:k;bmat(i,j) = beta(i,1);end;end;% end of for j loop

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -