📄 becmf.m
字号:
function ylevf = becmf(y,nlag,nfor,begf,tight,weight,decay,r);% PURPOSE: estimates a Bayesian error correction model of order n% and produces f-step-ahead forecasts%---------------------------------------------------------------% USAGE: yfor = becmf(y,nlag,nfor,begf,tight,weight,decay,r)% where: y = an (nobs x neqs) matrix of y-vectors in levels% nlag = the lag length% nfor = the forecast horizon% begf = the beginning date of the forecast% tight = Litterman's tightness hyperparameter% weight = Litterman's symmetric weight (scalar)% decay = Litterman's lag decay = lag^(-decay) % r = # of co-integrating relations to use% (optional: this will be determined using% Johansen's trace test at 95%-level if left blank) %---------------------------------------------------------------% NOTES: - constant vector automatically included% - x-matrix of exogenous variables not allowed% - error correction variables are automatically% constructed using output from Johansen's ML-estimator %---------------------------------------------------------------% RETURNS:% yfor = an nfor x neqs matrix of level forecasts for each equation%---------------------------------------------------------------% SEE ALSO: bvarf, ecmf, varf, rvarf, recmf%---------------------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);% adjust nobs to feed the lagsnmin = min(nobs,begf-1);nobse = nmin - nlag;% do some error checking if nlag < 1error('Lag length less than 1 in becmf');end;if nlag > nobserror('Lag length exceeds observations in becmf');end;if decay < 0error('Negative lag decay in becmf');end;[wchk1 wchk2] = size(weight);if (wchk1 ~= wchk2) error('non-square weight matrix in becmf');elseif wchk1 > 1 if wchk1 ~= neqs error('wrong size weight matrix in becmf'); end;end;% check for zeros in weight matrixif wchk1 == 1 if weight == 0 error('becmf: must have weight > 0'); end;elseif wchk1 > 1 zip = find(weight == 0); if length(zip) ~= 0 error('becmf: must have weights > 0'); end;end;nx = 0; if nargin == 8 % user supplied r-value % use johansen to determine ec variables % decrement r by 1 when calling johansen jres = johansen(y(1:nmin,:),0,nlag); % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r-error correction variables x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); elseif nargin == 7 % we have to determine r-value jres = johansen(y(1:nmin,:),0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs; if trstat(i,1) > tsignf(i,2) r = i; end; end; % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r error correction variables x = mlag(y(1:nmin,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); else error('Wrong # of input arguments to becmf'); end;% adjust nvar for constant term and error correction termsk = neqs*nlag+nx+1;% truncate to begf-1 for estimation ytrunc = y(1:nmin,:);% transform to 1st difference formdy = zeros(nmin,neqs);for i=1:neqs;dy(:,i) = ytrunc(:,i) - lag(ytrunc(:,i),1);end;% generate lagged rhs matrixxlag = mlag(dy,nlag);% do scaling here using fuller y-vector information% determine scale factors using univariate AR modelscale = zeros(neqs,1);scale2 = zeros(neqs,neqs);ytmp = zeros(nmin,1);for j=1:neqs ytmp = dy(1:nmin,j); scale(j,1) = scstd(ytmp,nmin,nlag);end;for j=1:neqs; for i=1:neqs; scale2(i,j) = scale(j)/scale(i); end;end;% add constant and ec variables to x-matrix and feed lagsif nx == 0 xmat = [xlag(nlag+1:nmin,:) ones(nmin-nlag,1)];else xmat = [xlag(nlag+1:nmin,:) x(nlag+1:nmin,:) ones(nmin-nlag,1)];end;% form xpx only once to save timexpx = xmat'*xmat;% dimension some result matricesbmat = zeros(k,neqs);yfor = zeros(nfor,neqs);ylev = zeros(nfor,neqs);% pull out each y-vector and run regressionsfor j=1:neqs;yvec = dy(nlag+1:nmin,j);xpy = xmat'*yvec;reslt = theilbf(xpy,xpx,nlag,neqs,j,tight,weight,decay,scale2,scale,nx);bmat(:,j) = reslt.beta;end;% given bmat values generate future forecasts % 1-step-ahead forecast xtrunc = [dy(nmin-(nlag):nmin,:) zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0ecterm = y(begf-1,index)*ecvectors(:,1:r); % add ec variables xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat; % NOTE this is a change forecastylev(1,i) = yfor(1,i) + y(nmin-1,i); % this adds the previous levelend;xnew = zeros(nlag+nx+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nfor;xnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);% construct ec terms based on levels forecast from previous periodsif nx > 0ecterm = ylev(step-1,index)*ecvectors(:,1:r);xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat; % change forecastylev(step,i) = yfor(step,i) + ylev(step-1,i); % level forecastend;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag; xnew(i,:) = yfor(cnt,:); cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);% construct ec terms based on levels forecast from previous periodsif nx > 0ecterm = ylev(step,index)*ecvectors(:,1:r);xvec = [xobs ecterm 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat; % change forecastylev(step+1,i) = yfor(step+1,i) + ylev(step-1,i); % level forecastend;end;end; % convert 1st difference forecasts to levelsylevf = zeros(nfor,neqs);% 1-step-ahead forecastylevf(1,:) = yfor(1,:) + y(begf-1,:); % add change to actual from time t;% 2-nfor-step-ahead forecastsfor i=2:nfor % ylevf(i,:) = yfor(i,:) + ylevf(i-1,:);end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -