⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bvar_g.m

📁 计量工具箱
💻 M
字号:
function result = bvar_g(x,nlag,ndraw,nomit,prior,xx);% PURPOSE: Gibbs sampling estimates for Bayesian vector %          autoregressive model using Minnesota-type prior%          y = A(L) Y + X B + E, E = N(0,sige*V), %          V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)%          c = R A(L) + U, U = N(0,Z), Minnesota prior%          a diffuse prior is used for B associated with deterministic%          variables%---------------------------------------------------% USAGE:  result = bvar_g(y,nlag,ndraw,nomit,prior,x)% WHERE:    y    = an (nobs x neqs) matrix of y-vectors%           nlag = the lag length%          ndraw = # of draws%          nomit = # of initial draws omitted for burn-in   %          prior = a structure variable%               prior.tight,  Litterman's tightness hyperparameter%               prior.weight, Litterman's weight (matrix or scalar)%               prior.decay,  Litterman's lag decay = lag^(-decay) %               prior.rval, r prior hyperparameter, default=4%               prior.m,    informative Gamma(m,k) prior on r%               prior.k,    informative Gamma(m,k) prior on r      %          x     = an optional (nobs x nx) matrix of variables% NOTE:  constant vector automatically included%---------------------------------------------------% RETURNS: a structure:% results.meth   = 'bvar_g'% results.nobs   = nobs, # of observations% results.neqs   = neqs, # of equations% results.nlag   = nlag, # of lags% results.nvar   = nlag*neqs+1+nx, # of variables per equation% results.tight  = overall tightness hyperparameter% results.weight = weight scalar or matrix hyperparameter% results.decay  = lag decay hyperparameter% results.m  = prior m-value for r hyperparameter (if input)% results.k  = prior k-value for r hyperparameter (if input)% results.r  = value of hyperparameter r (if input)% results.ndraw  = # of draws% results.nomit  = # of initial draws omitted% results.nx     = # of deterministic variables% results.x      = deterministic variables matrix (nobs x nx)% --- the following are referenced by equation # --- % results(eq).bdraw = bhat draws for equation eq% results(eq).vmean = mean of vi draws for equation eq % results(eq).sdraw = sige draws for equation eq% results(eq).rdraw = r-value draws for eq, if Gamma(m,k) prior % results(eq).y     = actual observations for eq (nobs x 1)% results(eq).time   = time taken for sampling eq% ---------------------------------------------------% SEE ALSO:  bvar, var, ecm, rvar, plt, prt% ---------------------------------------------------% REFERENCES:  LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''%---------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(x);% error checking on inputif ~isstruct(prior)    error('bvar_g: must supply the prior as a structure variable');    elseif  nargin == 6  % deterministic variables[nobs2 nx] = size(xx);   if (nobs2 ~= nobs)   error('X and Y-matrices in bvar_g have different # of obs');   end;result.x = xx;elseif nargin == 5 % no deterministic variablesnx = 0;else error('Wrong # of arguments to bvar_g');end;fields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf    if strcmp(fields{i},'rval')        rval = prior.rval;     elseif strcmp(fields{i},'m')        mm = prior.m;        kk = prior.k;        rval = gamm_rnd(1,1,mm,kk);    % initial value for rval    elseif strcmp(fields{i},'tight')        tight = prior.tight;        if tight < 0.01        warning('Tightness less than 0.01 in bvar_g');        elseif tight > 1.0        warning('Tightness greater than unity in bvar_g');        end;    elseif strcmp(fields{i},'weight')        weight = prior.weight;              [wchk1 wchk2] = size(weight);       if (wchk1 ~= wchk2)        error('non-square weight matrix in bvar_g');       elseif wchk1 > 1        if wchk1 ~= neqs        error('wrong size weight matrix in bvar_g');        end;       end;    elseif strcmp(fields{i},'decay')        decay = prior.decay;            if decay < 0        error('Negative lag decay in bvar_g');        end;           end;end;if nlag < 1error('Lag length less than 1 in bvar_g');end;[nobs nvar] = size(x);if nlag > nobserror('Lag length exceeds observations in bvar_g');end;% adjust nobs to feed the lagsnobse = nobs - nlag;% nvar adjusted for constant termk = neqs*nlag + 1 + nx;nvar = k;% fill-in easy stuffresult.meth = 'bvar_g';result.nlag = nlag;result.nvar = nvar;result.nobs = nobse;result.neqs = neqs;result.tight = tight;result.decay = decay;result.weight = weight;result.ndraw = ndraw;result.nomit = nomit;result.r = rval;result.nx = nx;if nx > 0result.x = xx;end;% generate lagged rhs matrixxlag = mlag(x,nlag);% do scaling here using fuller y-vector information% determine scale factors using univariate AR modelscale = zeros(neqs,1);scale2 = zeros(neqs,neqs);for j=1:neqs   ytmp = x(1:nobs,j);   scale(j,1) = scstd(ytmp,nobs,nlag);end;for j=1:neqs;   for i=1:neqs;   scale2(i,j) = scale(j,1)/scale(i,1);   end;end;% form x-matrix if nxxmat = [xlag(nlag+1:nobs,:) xx(nlag+1:nobs,:) ones(nobs-nlag,1)];elsexmat = [xlag(nlag+1:nobs,:) ones(nobs-nlag,1)];end;% Form prior to feed down to ols_g[nw1 nw2] = size(weight);if nw1 == 1  % case of a scalar symmetric weight matrixwght = ones(neqs,neqs)*weight; for i=1:neqs; wght(i,i) = 1.0; end;else % general prior weight matrixwght = weight;end;% pull out each y-vector and run ols_g regressionsfor eqn=1:neqs;yvec = x(nlag+1:nobs,eqn);% find Doan's sigma(i,j,l)sigma = zeros(nvar,1);k = 1;for j=1:neqs; for l=0:nlag-1;  ldecay = (l+1)^decay;  ldecay = 1.0/ldecay;  sigma(k,1) = (tight*wght(eqn,j)*ldecay)*scale2(j,eqn);  k = k+1; end;end;% setup prior R-matrix% R = diagonal matrix with scale(i,1)/S(i,j,l)R = zeros(nvar,nvar);% N.B. we don't want to divide by zero % (diffuse prior on the x-variables and constant term) % so we use nvar-nx-1  for i=1:nvar-nx-1;R(i,i) = scale(eqn,1)/sigma(i,1);end;% setup prior c-vector% equal to scale(i,1)/S(i,j,l) x prior meanc = zeros(nvar,1);cind = (eqn-1)*nlag+1;if eqn == 1cind = 1;end;c(cind,1) = scale(eqn,1)/sigma(cind,1);oprior.beta = c;oprior.rmat = R;oprior.bcov = eye(nvar);if mm ~= 0;oprior.m = mm;oprior.k = kk;elseoprior.rval = rval;end;bresult = theil_g(yvec,xmat,oprior,ndraw,nomit);result(eqn).bdraw = bresult.bdraw;     result(eqn).vmean = bresult.vmean;     result(eqn).rdraw = bresult.rdraw;     result(eqn).sdraw = bresult.sdraw;    result(eqn).y = x(:,eqn); result(eqn).time = bresult.time;end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -