📄 becm.m
字号:
function results = becm(y,nlag,tight,weight,decay,r)% PURPOSE: performs Bayesian error correction model estimation% using Minnesota-type prior%---------------------------------------------------% USAGE: result = becm(y,nlag,tight,weight,deacy,r) % where: y = an (nobs x neqs) matrix of y-vectors in levels% nlag = the lag length% tight = Litterman's tightness hyperparameter% weight = Litterman's weight (matrix or scalar)% decay = Litterman's lag decay = lag^(-decay) % r = # of cointegrating relations to use% (optional: this will be determined using% Johansen's trace test at 95%-level if left blank) % NOTES: constant vector automatically included% x-matrix of exogenous variables not allowed% error correction variables are automatically% constructed using output from Johansen's ML-estimator %---------------------------------------------------% RETURNS a structure% results.meth = 'becm'% results.nobs = nobs, # of observations% results.neqs = neqs, # of equations% results.nlag = nlag, # of lags% results.nvar = nlag*neqs+nx+1, # of variables per equation% results.coint = # of co-integrating relations (or r if input)% results.tight = tightness hyperparameter% results.weight= weight matrix or scalar% results.decay = lag decay hyperparameter% --- the following are referenced by equation # --- % results(eq).beta = bhat for equation eq (includes ec-bhats)% results(eq).tstat = t-statistics % results(eq).tprob = t-probabilities% results(eq).resid = residuals % results(eq).yhat = predicted values (levels) (nlag+2:nobs,1)% results(eq).dyhat = predicted values (differenced) (nlag+2:nobs,1)% results(eq).y = actual y-level values (nobs x 1)% results(eq).dy = actual y-differenced values (nlag+2:nobs,1)% results(eq).sige = e'e/(n-k)% results(eq).rsqr = r-squared% results(eq).rbar = r-squared adjusted% --------------------------------------------------- % SEE ALSO: becmf, ecm, recm, prt_var % ---------------------------------------------------% REFERENCES: James P. LeSage, % ``A Comparison of the Forecasting Ability of ECM and VAR Models'',% Review of Economics and Statistics, 1990, Vol 72, number 4, pp. 664-671.% ---------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);% do some error checking here so as not to confuse the user% with error messages from bvar called belowif nlag < 1error('Lag length less than 1 in becm');end;if nlag > nobserror('Lag length exceeds observations in becm');end;if tight < 0.01warning('Tightness less than 0.01 in becm');end;if tight > 1.0warning('Tightness greater than unity in becm');end;if decay < 0error('Negative lag decay in becm');end;[wchk1 wchk2] = size(weight);if (wchk1 ~= wchk2) error('non-square weight matrix in becm');elseif wchk1 > 1 if wchk1 ~= neqs error('wrong size weight matrix in becm'); end;end;% check for zeros in weight matrixif wchk1 == 1 if weight == 0 error('becm: must have weight > 0'); end;elseif wchk1 > 1 zip = find(weight == 0); if length(zip) ~= 0 error('becm: must have weights > 0'); end;end;nx = 0;if nargin == 6 % user is specifying the # of error correction terms to % include -- get them using johansen() jres = johansen(y,0,nlag); % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r-error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r); [nobs2 nx] = size(x); elseif nargin == 5 % we need to find r jres = johansen(y,0,nlag); % find r = # significant co-integrating relations using % the trace statistic output trstat = jres.lr1; tsignf = jres.cvt; r = 0; for i=1:neqs; if trstat(i,1) > tsignf(i,2) r = i; end; end; % recover error correction vectors ecvectors = jres.evec; index = jres.ind; % construct r error correction variables x = mlag(y(:,index),1)*ecvectors(:,1:r); [junk nx] = size(x); else error('Wrong # of arguments to becm');end;% nvar adjusted for constant term k = neqs*nlag+nx+1; nvar = k;% transform to 1st difference formdy = tdiff(y,1);dy = trimr(dy,1,0); % account for differencingx = trimr(x,1,0); % account for differencing% call BVAR using 1st difference and co-integrating variables% call depends on whether we have an x-matrix or notif nx ~= 0 results = bvar(dy,nlag,tight,weight,decay,x);elseresults = bvar(dy,nlag,tight,weight,decay);end;results(1).meth = 'becm';results(1).coint = r;results(1).tight = tight;results(1).weight = weight;results(1).decay = decay;results(1).index = index;for j=1:neqs;results(j).y = y(:,j);results(j).dy = dy(:,j);results(j).dyhat = results(j).yhat;% find predicted values in levels formylag = lag(y(:,j),1);ylag = trimr(ylag,nlag+1,0);yhat = results(j).yhat + ylag;results(j).yhat = yhat;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -