⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 recmf_d.m

📁 计量工具箱
💻 M
字号:
% PURPOSE: An example of using recmf(), %          to produce ecm-model forecasts                                                 %          (based on Bayesian Spatial contiguity prior) %              % References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''            %---------------------------------------------------% USAGE: recmf_d%---------------------------------------------------load test.dat; % a test data set containing               % monthly mining employment for               % il,in,ky,mi,oh,pa,tn,wv% data covers 1982,1 to 1996,5vnames =  ['  il',           '  in',               '  ky',               '  mi',               '  oh',               '  pa',               '  tn',               '  wv'];         y = test;[nobs neqs] = size(y);nfor = 12; % number of forecast periodsnlag = 9;  % number of lags in var-modelbegf = nobs-nfor+1; % beginning forecast period% prior hyperparameters% priors for contiguous variables:  N(w(i,j),sig) for 1st own lag%                                  N(  0 ,tau*sig/k) for lag k=2,...,nlag%               % priors for non-contiguous variables are:  N(w(i,j) ,theta*sig/k) for lag k %  % e.g., if y1, y3, y4 are contiguous variables in eq#1, y2 non-contiguous%  w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0%                                              % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1  sig = 0.5;tau = 6;theta = 0.75;freq = 12;   % monthly data% this is an example of using 1st-order contiguity% of the states as weights to produce prior means weight = ones(neqs,neqs); % set everything to contiguous  weight(1,4) = 0.0;  % specify non-contiguous states weight(1,5) = 0.0; weight(1,6) = 0.0; weight(1,8) = 0.0; weight(2,6) = 0.0; weight(2,7) = 0.0; weight(2,8) = 0.0; weight(3,4) = 0.0; weight(3,6) = 0.0; weight(4,1) = 0.0; weight(4,3) = 0.0; weight(4,6) = 0.0; weight(4,7) = 0.0; weight(4,8) = 0.0; weight(5,1) = 0.0; weight(5,7) = 0.0; weight(6,1) = 0.0; weight(6,2) = 0.0; weight(6,3) = 0.0; weight(6,4) = 0.0; weight(6,7) = 0.0; weight(7,2) = 0.0; weight(7,4) = 0.0; weight(7,5) = 0.0; weight(7,6) = 0.0; weight(7,8) = 0.0; weight(8,1) = 0.0; weight(8,2) = 0.0; weight(8,4) = 0.0;for ii=1:neqs;weight(ii,ii) = 0.0; % set main-diagonal to zeroend; for ii=1:neqs; % normalize row-sums to unity rsum = sum(weight(ii,:));  for jj=1:neqs;  weight(ii,jj) = weight(ii,jj)/rsum;  end; end;% produce historical forecasts% let routine determine # of co-integrating vectorsfcasts = recmf(y,nlag,weight,freq,nfor,begf,sig,tau,theta);actual = y(begf:begf+nfor-1,:);fprintf(1,'actual levels of mining employment \n');for i=1:nforfprintf(1,'%12s ',tsdate(1982,1,12,begf+i-1));for j=1:neqs;fprintf(1,'%8.2f ',actual(i,j));end;fprintf(1,'\n');end;fprintf(1,'RECM model \n');fprintf(1,'levels forecasts of mining employment \n');for i=1:nforfprintf(1,'%12s ',tsdate(1982,1,12,begf+i-1));for j=1:neqs;fprintf(1,'%8.2f ',fcasts(i,j));end;fprintf(1,'\n');end;% future forecastbegf = nobs+1;% let the routine determine # of co-integrating vectorsfcasts = recmf(y,nlag,weight,freq,nfor,begf,sig,tau,theta);fprintf(1,'RECM model \n');fprintf(1,'FUTURE levels forecast of mining employment \n');for i=1:nforfprintf(1,'%12s ',tsdate(1982,1,12,begf+i-1));for j=1:neqs;fprintf(1,'%8.2f ',fcasts(i,j));end;fprintf(1,'\n');end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -