⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rvarf_g.m

📁 计量工具箱
💻 M
字号:
function ylevf = rvarf_g(y,nlag,nfor,begf,prior,ndraw,nomit,x);% PURPOSE: Gibbs forecasts for a Bayesian vector autoregressive %          model using the random-walk averaging prior %          y = A(L) Y + X B + E, E = N(0,sige*V), %          V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)%          c = R A(L) + U, U = N(0,Z), random-walk averaging prior%          diffuse prior on B is used          %---------------------------------------------------% USAGE:  yfor = rvarf_g(y,nlag,nfor,begf,prior,ndraw,nomit,x)% WHERE:    y    = an (nobs x neqs) matrix of y-vectors (in levels)%           nlag = the lag length%           nfor = the forecast horizon%           begf = the beginning date of the forecast   %          prior = a structure variable%               prior.rval, r prior hyperparameter, default=4%               prior.m,    informative Gamma(m,k) prior on r%               prior.k,    informative Gamma(m,k) prior on r %               prior.w,    an (neqs x neqs) matrix containing prior means%                           (rows should sum to unity, see below)%               prior.freq = 1 for annual, 4 for quarterly, 12 for monthly%               prior.sig  = prior variance hyperparameter (see below)%               prior.tau  = prior variance hyperparameter (see below)%               prior.theta = prior variance hyperparameter (see below)                %          ndraw = # of draws%          nomit = # of initial draws omitted for burn-in                 %           x    = an (nobs x nx) matrix of deterministic variables%                  (in any form, they are not altered during estimation)%                  (constant term automatically included)                  % priors for important variables:  N(w(i,j),sig) for 1st own lag%                                  N(  0 ,tau*sig/k) for lag k=2,...,nlag               % priors for unimportant variables: N(w(i,j) ,theta*sig/k) for lag 1 %                                   N(  0 ,theta*sig/k)    for lag k=2,...,nlag  % e.g., if y1, y3, y4 are important variables in eq#1, y2 unimportant%  w(1,1) = 1/3, w(1,3) = 1/3, w(1,4) = 1/3, w(1,2) = 0                                              % typical values would be: sig = .1-.3, tau = 4-8, theta = .5-1  %---------------------------------------------------% NOTES: - estimation is carried out in annualized growth terms because %          the prior means rely on common (growth-rate) scaling of variables%          hence the need for a freq argument input.%        - constant term included automatically  %---------------------------------------------------% RETURNS:%  yfor = an nfor x neqs matrix of level forecasts for each equation%---------------------------------------------------------------% ---------------------------------------------------    % SEE ALSO: bvarf_g, becmf_g, recmf_g, rvar_g% ---------------------------------------------------% References: LeSage and Krivelyova (1998) % ``A Spatial Prior for Bayesian Vector Autoregressive Models'',% forthcoming Journal of Regional Science, (on http://www.econ.utoledo.edu)% and% LeSage and Krivelova (1997) (on http://www.econ.utoledo.edu)% ``A Random Walk Averaging Prior for Bayesian Vector Autoregressive Models''% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.edu[nobs neqs] = size(y);% find # observations up to forecast periodnmin = min(nobs,begf-1);nx = 0;% error checking on inputif ~isstruct(prior)    error('rvarf_g: must supply the prior as a structure variable');end;if nargin == 8 % user is specifying deterministic variables   [nobs2 nx] = size(x);   elseif nargin == 7 % no deterministic variablesnx = 0;else error('Wrong # of arguments to rvarf_g');end;% do error checking here, even though it is redundant since% rvar_g will do the same error checking. BUT, we avoid% confusing the poor user who will get error messages from% this routine that he called, rather than rvar_gfields = fieldnames(prior);nf = length(fields);mm = 0; rval = 4; % rval = 4 is defaultnu = 0; d0 = 0; % default to a diffuse prior on sigefor i=1:nf    if strcmp(fields{i},'rval')        rval = prior.rval;     elseif strcmp(fields{i},'m')        mm = prior.m;        kk = prior.k;        rval = gamm_rnd(1,1,mm,kk);    % initial value for rval    elseif strcmp(fields{i},'tau')        tau = prior.tau;    elseif strcmp(fields{i},'w')        w = prior.w;              [wchk1 wchk2] = size(w);       if (wchk1 ~= wchk2)        error('non-square w matrix in rvarf_g');       elseif wchk1 > 1        if wchk1 ~= neqs        error('wrong size w matrix in rvarf_g');        end;       end;    elseif strcmp(fields{i},'theta')        theta = prior.theta;       elseif strcmp(fields{i},'sig')        sig = prior.sig;     elseif strcmp(fields{i},'freq')        freq = prior.freq;             end;end;if nlag < 1error('Lag length less than 1 in rvarf_g');end;% truncate to begf-1 for estimation ytrunc = y(1:nmin,:);% call rvar_g with input informationif nx > 0result = rvar_g(ytrunc,nlag,prior,ndraw,nomit,x);elseresult = rvar_g(ytrunc,nlag,prior,ndraw,nomit);end;% all we really care about is:% result(eq).bdraw = bhat draws for equation eqfor j=1:neqs;b = mean(result(j).bdraw);bmat(:,j) = b';end;% given bmat values generate future%  growth rate forecasts dy = growthr(y,freq);   % 1-step-ahead forecast xtrunc = [dy(nmin-(nlag):nmin,:)          zeros(1,neqs)];xfor = mlag(xtrunc,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(1,i) = xvec*bhat; % growth rate forecastend;xnew = zeros(nlag+1,neqs);% 2 through nlag-step-ahead forecastsfor step=2:nlag;if step <= nforxnew(1:nlag-step+1,:) = dy(nmin-nlag+step:nmin,:);xnew(nlag-step+2:nlag,:) = yfor(1:step-1,:);xnew(nlag+1,:) = zeros(1,neqs);xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0 xvec = [xobs x(begf+step-1,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step,i) = xvec*bhat;end;end;end;% nlag through nfore-step-ahead forecastsfor step=nlag:nfor-1;if step <= nfor;cnt = step-(nlag-1); for i=1:nlag;  xnew(i,:) = yfor(cnt,:);  cnt = cnt+1; end; xfor = mlag(xnew,nlag);[xend junk] = size(xfor);xobs = xfor(xend,:);if nx > 0xvec = [xobs x(begf+step,:) 1];elsexvec = [xobs 1];end;% loop over equationsfor i=1:neqs;bhat = bmat(:,i);yfor(step+1,i) = xvec*bhat;end;end; % end of if step  end;% convert growth rate forecasts to levelsylevf = zeros(nfor,neqs);yfor = yfor/100;for step=1:nfor;if freq < step, % here we can use past level forecasts   ylevf(step,:) = (1 + yfor(step,:)).*ylevf(step-freq,:);else % case of freq > step, use past actual levels   ylevf(step,:) = (1 + yfor(step,:)).*y(begf+step-freq-1,:);end; % end of if freq <= stepend; % end of for step loop

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -