📄 logn_inv.m
字号:
function linv = logn_inv (x, a, v)
% PURPOSE: inverse cdf (quantile) of the lognormal distribution
%--------------------------------------------------------------
% USAGE: linv = logn_inv(x,a,v)
% where: x = x = matrix or vector
% a = mean, a = scalar or size(x), default = 1
% v = variance b = scalar or size(x), default = 1
% NOTE: the logarithm of a lognormal random deviate is
% normally distributed with mean = log(a) and variance (v)
%--------------------------------------------------------------
% RETURNS: quantile at each element of x of the lognormal distribution
%--------------------------------------------------------------
% Written by KH (Kurt.Hornik@ci.tuwien.ac.at)
% Converted to MATLAB by JP LeSage, jpl@jpl.econ.utoledo.edu
if ~((nargin == 1) | (nargin == 3))
error('Wrong # of arguments to logn_inv');
end
if (nargin == 1)
a = 1;
v = 1;
end
% The following "straightforward" implementation unfortunately does
% not work (because exp (Inf) -> NaN):
% inv = exp (normal_inv (x, log (a), v));
% Hence ...
[retval, x, a, v] = com_size (x, a, v);
if (retval > 0)
error('logn_inv: x, m and v must be of common size or scalars');
end
[r, c] = size(x);
s = r * c;
x = reshape(x, 1, s);
a = reshape(a, 1, s);
v = reshape(v, 1, s);
linv = zeros(1, s);
k = find (~(x >= 0) | ~(x <= 1) | ~(a > 0) | ~(a < Inf) ...
| ~(v > 0) | ~(v < Inf));
if any(k)
linv(k) = NaN * ones(1, length(k));
end
k = find((x == 1) & (a > 0) & (a < Inf) & (v > 0) & (v < Inf));
if any(k)
linv(k) = Inf * ones(1, length (k));
end
k = find ((x > 0) & (x < 1) & (a > 0) & (a < Inf) ...
& (v > 0) & (v < Inf));
if any(k)
linv(k) = a(k) .* exp(sqrt(v(k)) .* stdn_inv(x(k)));
end
linv = reshape(linv, r, c);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -