⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 9.cpp

📁 《数据结构与程序设计》书本所有源代码!!!!
💻 CPP
字号:
/* Program extracts from Chapter 9 of   "Data Structures and Program Design in C++"   by Robert L. Kruse and Alexander J. Ryba   Copyright (C) 1999 by Prentice-Hall, Inc.  All rights reserved.   Extracts from this file may be used in the construction of other programs,   but this code will not compile or execute as given here. */// Section 9.5:template <class Record>class Sortable_list: public List<Record> {public:   //   sorting methods   void radix_sort();   //   Specify any other sorting methods here.private:  //   auxiliary functions   void rethread(Queue queues[]);};class Record {public:   char key_letter(int position) const;   Record();                    //  default constructor   operator Key() const;        //  cast to Key//   Add other methods and data members for the class.};const int max_chars = 28;template <class Record>void Sortable_list<Record>::radix_sort()/*Post: The entries of the Sortable_list have been sorted      so all their keys are in alphabetical order.Uses: Methods from classes List, Queue, and Record;      functions position and rethread.*/{   Record data;   Queue queues[max_chars];   for (int position = key_size - 1; position >= 0; position--) {      //   Loop from the least to the most significant position.      while (remove(0, data) == success) {         int queue_number = alphabetic_order(data.key_letter(position));         queues[queue_number].append(data);    //   Queue operation.      }      rethread(queues);                        //   Reassemble the list.   }}int alphabetic_order(char c)/*Post: The function returns the alphabetic position of character c,      or it returns 0 if the character is blank.*/{   if (c == ' ') return 0;   if ('a' <= c && c <= 'z') return c - 'a' + 1;   if ('A' <= c && c <= 'Z') return c - 'A' + 1;   return 27;}template <class Record>void Sortable_list<Record>::rethread(Queue queues[])/*Post: All the queues are combined back to the Sortable_list, leaving      all the queues empty.Uses: Methods of classes List and Queue.*/{   Record data;   for (int i = 0; i < max_chars; i++)      while (!queues[i].empty()) {         queues[i].retrieve(data);         insert(size(), data);         queues[i].serve();      }}// Section 9.6:class Key: public String{public:    char key_letter(int position) const;    void make_blank();    //  Add constructors and other methods.};int hash(const Key &target)/*Post: target has been hashed, returning a value between 0 and hash_size-1.Uses: Methods for the class Key.*/{   int value = 0;   for (int position = 0; position < 8; position++)      value = 4 * value + target.key_letter(position);   return value % hash_size;}const int hash_size = 997;   //  a prime number of appropriate sizeclass Hash_table {public:   Hash_table();   void clear();   Error_code insert(const Record &new_entry);   Error_code retrieve(const Key &target, Record &found) const;private:   Record table[hash_size];};Error_code Hash_table::insert(const Record &new_entry)/*Post: If the Hash_table is full, a code of overflow is returned.      If the table already contains an item with the key of new_entry      a code of duplicate_error is returned.  Otherwise: The Record new_entry      is inserted into the Hash_table and success is returned.Uses: Methods for classes Key and Record, the function hash.*/{   Error_code result = success;   int probe_count,           //  Counter to be sure that table is not full.       increment,             //  Increment used for quadratic probing.       probe;                 //  Position currently probed in the hash table.   Key null;                   //  Null key for comparison purposes.   null.make_blank();   probe = hash(new_entry);   probe_count = 0;   increment = 1;   while (table[probe] != null              //   Is the location empty?     && table[probe] != new_entry           //   Duplicate key?     && probe_count < (hash_size + 1) / 2) {//   Has overflow occurred?      probe_count++;      probe = (probe + increment) % hash_size;      increment += 2;                  //     Prepare increment for next iteration.   }   if (table[probe] == null) table[probe] = new_entry; //   Insert new entry.   else if (table[probe] == new_entry) result = duplicate_error;   else result =  overflow;                                   //   The table is full.   return result;}class Hash_table {public:   //  Specify methods here.private:   List<Record> table[hash_size];};// Section 9.9:class Life {public:   //  methodsprivate:   bool map[int][int];   //  other data and auxiliary functions};int main()  //  Program to play Conway's game of Life./*Pre:The user supplies an initial configuration of living cells.Post: The program prints a sequence of pictures showing the changes in      the configuration of living cells according to the rules for      the game of Life.Uses: The class Life and its methods initialize(), print() and update().      The functions  instructions(),  user_says_yes().*/{   Life configuration;   instructions();   configuration.initialize();   configuration.print();   cout << "Continue viewing new generations? " << endl;   while (user_says_yes()) {      configuration.update();      configuration.print();      cout << "Continue viewing new generations? " << endl;   }}struct Cell {   Cell() { row = col = 0; }   //  constructors   Cell(int x, int y) { row = x;  col = y; }   int row, col;               //   grid coordinates};class Hash_table {public:   Error_code insert(Cell *new_entry);   bool retrieve(int row, int col) const;private:   List<Cell *> table[hash_size];};class Life {public:   Life();   void initialize();   void print();   void update();   ~Life();private:   List<Cell *> *living;   Hash_table *is_living;   bool retrieve(int row, int col) const;   Error_code insert(int row, int col);   int neighbor_count(int row, int col) const;};void Life::update()/*Post: The Life object contains the next generation of configuration.Uses: The class Hash_table and the class Life and its auxiliary functions.*/{   Life new_configuration;   Cell *old_cell;   for (int i = 0; i < living->size(); i++) {      living->retrieve(i, old_cell);      //  Obtain a living cell.      for (int row_add = -1; row_add < 2; row_add ++)         for (int col_add = -1; col_add < 2; col_add++) {            int new_row = old_cell->row + row_add,                new_col = old_cell->col + col_add;//  new_row, new_col is now a living cell or a neighbor of a living cell,            if (!new_configuration.retrieve(new_row, new_col))               switch (neighbor_count(new_row, new_col)) {               case 3:  //  With neighbor count 3, the cell becomes alive.                  new_configuration.insert(new_row, new_col);                  break;               case 2:  //  With count 2, cell keeps the same status.                  if (retrieve(new_row, new_col))                     new_configuration.insert(new_row, new_col);                  break;               default: //  Otherwise, the cell is dead.                  break;               }         }   }//  Exchange data of current configuration with data of new_configuration.   List<Cell *> *temp_list = living;   living = new_configuration.living;   new_configuration.living = temp_list;   Hash_table *temp_hash = is_living;   is_living = new_configuration.is_living;   new_configuration.is_living = temp_hash;}void Life::print()/*Post: A central window onto the Life object is displayed.Uses: The auxiliary function Life::retrieve.*/{   int row, col;   cout << endl << "The current Life configuration is:" << endl;   for (row = 0; row < 20; row++) {      for (col = 0; col < 80; col++)         if (retrieve(row, col)) cout << '*';         else cout << ' ';      cout << endl;   }   cout << endl;}Error_code Life::insert(int row, int col)/*Pre:  The cell with coordinates row and col does not      belong to the Life configuration.Post: The cell has been added to the configuration.  If insertion into      either the List or the Hash_table fails, an error      code is returned.Uses: The class List, the class Hash_table, and the struct Cell*/{   Error_code outcome;   Cell *new_cell = new Cell(row, col);   int index = living->size();   outcome = living->insert(index, new_cell);   if (outcome == success)      outcome = is_living->insert(new_cell);   if (outcome != success)      cout << " Warning: new Cell insertion failed" << endl;   return outcome;}Life::Life()/*Post: The members of a Life object are dynamically allocated and initialized.Uses: The class Hash_table and the class List.*/{   living = new List<Cell *>;   is_living = new Hash_table;}Life::~Life()/*Post: The dynamically allocated members of a Life object      and all ell objects that they reference are deleted.Uses: The class Hash_table and the class List.*/{   Cell *old_cell;   for (int i = 0; i < living->size(); i++) {      living->retrieve(i, old_cell);      delete old_cell;   }   delete is_living;         //  Calls the Hash_table destructor   delete living;            //  Calls the List destructor}const int factor = 101;int hash(int row, int col)/*Post: The function returns the hashed valued between      0 and hash_size - 1 that corresponds to the given Cell parameter.*/{   int value;   value = row + factor * col;   value %= hash_size;   if (value < 0) return value + hash_size;   else return value;}/*************************************************************************/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -