📄 rfc3501.txt
字号:
The client command begins an operation. Each client command is prefixed with an identifier (typically a short alphanumeric string, e.g., A0001, A0002, etc.) called a "tag". A different tag is generated by the client for each command. Clients MUST follow the syntax outlined in this specification strictly. It is a syntax error to send a command with missing or extraneous spaces or arguments. There are two cases in which a line from the client does not represent a complete command. In one case, a command argument is quoted with an octet count (see the description of literal in String under Data Formats); in the other case, the command arguments require server feedback (see the AUTHENTICATE command). In either case, theCrispin Standards Track [Page 6]RFC 3501 IMAPv4 March 2003 server sends a command continuation request response if it is ready for the octets (if appropriate) and the remainder of the command. This response is prefixed with the token "+". Note: If instead, the server detected an error in the command, it sends a BAD completion response with a tag matching the command (as described below) to reject the command and prevent the client from sending any more of the command. It is also possible for the server to send a completion response for some other command (if multiple commands are in progress), or untagged data. In either case, the command continuation request is still pending; the client takes the appropriate action for the response, and reads another response from the server. In all cases, the client MUST send a complete command (including receiving all command continuation request responses and command continuations for the command) before initiating a new command. The protocol receiver of an IMAP4rev1 server reads a command line from the client, parses the command and its arguments, and transmits server data and a server command completion result response.2.2.2. Server Protocol Sender and Client Protocol Receiver Data transmitted by the server to the client and status responses that do not indicate command completion are prefixed with the token "*", and are called untagged responses. Server data MAY be sent as a result of a client command, or MAY be sent unilaterally by the server. There is no syntactic difference between server data that resulted from a specific command and server data that were sent unilaterally. The server completion result response indicates the success or failure of the operation. It is tagged with the same tag as the client command which began the operation. Thus, if more than one command is in progress, the tag in a server completion response identifies the command to which the response applies. There are three possible server completion responses: OK (indicating success), NO (indicating failure), or BAD (indicating a protocol error such as unrecognized command or command syntax error). Servers SHOULD enforce the syntax outlined in this specification strictly. Any client command with a protocol syntax error, including (but not limited to) missing or extraneous spaces or arguments,Crispin Standards Track [Page 7]RFC 3501 IMAPv4 March 2003 SHOULD be rejected, and the client given a BAD server completion response. The protocol receiver of an IMAP4rev1 client reads a response line from the server. It then takes action on the response based upon the first token of the response, which can be a tag, a "*", or a "+". A client MUST be prepared to accept any server response at all times. This includes server data that was not requested. Server data SHOULD be recorded, so that the client can reference its recorded copy rather than sending a command to the server to request the data. In the case of certain server data, the data MUST be recorded. This topic is discussed in greater detail in the Server Responses section.2.3. Message Attributes In addition to message text, each message has several attributes associated with it. These attributes can be retrieved individually or in conjunction with other attributes or message texts.2.3.1. Message Numbers Messages in IMAP4rev1 are accessed by one of two numbers; the unique identifier or the message sequence number.2.3.1.1. Unique Identifier (UID) Message Attribute A 32-bit value assigned to each message, which when used with the unique identifier validity value (see below) forms a 64-bit value that MUST NOT refer to any other message in the mailbox or any subsequent mailbox with the same name forever. Unique identifiers are assigned in a strictly ascending fashion in the mailbox; as each message is added to the mailbox it is assigned a higher UID than the message(s) which were added previously. Unlike message sequence numbers, unique identifiers are not necessarily contiguous. The unique identifier of a message MUST NOT change during the session, and SHOULD NOT change between sessions. Any change of unique identifiers between sessions MUST be detectable using the UIDVALIDITY mechanism discussed below. Persistent unique identifiers are required for a client to resynchronize its state from a previous session with the server (e.g., disconnected or offline access clients); this is discussed further in [IMAP-DISC].Crispin Standards Track [Page 8]RFC 3501 IMAPv4 March 2003 Associated with every mailbox are two values which aid in unique identifier handling: the next unique identifier value and the unique identifier validity value. The next unique identifier value is the predicted value that will be assigned to a new message in the mailbox. Unless the unique identifier validity also changes (see below), the next unique identifier value MUST have the following two characteristics. First, the next unique identifier value MUST NOT change unless new messages are added to the mailbox; and second, the next unique identifier value MUST change whenever new messages are added to the mailbox, even if those new messages are subsequently expunged. Note: The next unique identifier value is intended to provide a means for a client to determine whether any messages have been delivered to the mailbox since the previous time it checked this value. It is not intended to provide any guarantee that any message will have this unique identifier. A client can only assume, at the time that it obtains the next unique identifier value, that messages arriving after that time will have a UID greater than or equal to that value. The unique identifier validity value is sent in a UIDVALIDITY response code in an OK untagged response at mailbox selection time. If unique identifiers from an earlier session fail to persist in this session, the unique identifier validity value MUST be greater than the one used in the earlier session. Note: Ideally, unique identifiers SHOULD persist at all times. Although this specification recognizes that failure to persist can be unavoidable in certain server environments, it STRONGLY ENCOURAGES message store implementation techniques that avoid this problem. For example: 1) Unique identifiers MUST be strictly ascending in the mailbox at all times. If the physical message store is re-ordered by a non-IMAP agent, this requires that the unique identifiers in the mailbox be regenerated, since the former unique identifiers are no longer strictly ascending as a result of the re-ordering. 2) If the message store has no mechanism to store unique identifiers, it must regenerate unique identifiers at each session, and each session must have a unique UIDVALIDITY value.Crispin Standards Track [Page 9]RFC 3501 IMAPv4 March 2003 3) If the mailbox is deleted and a new mailbox with the same name is created at a later date, the server must either keep track of unique identifiers from the previous instance of the mailbox, or it must assign a new UIDVALIDITY value to the new instance of the mailbox. A good UIDVALIDITY value to use in this case is a 32-bit representation of the creation date/time of the mailbox. It is alright to use a constant such as 1, but only if it guaranteed that unique identifiers will never be reused, even in the case of a mailbox being deleted (or renamed) and a new mailbox by the same name created at some future time. 4) The combination of mailbox name, UIDVALIDITY, and UID must refer to a single immutable message on that server forever. In particular, the internal date, [RFC-2822] size, envelope, body structure, and message texts (RFC822, RFC822.HEADER, RFC822.TEXT, and all BODY[...] fetch data items) must never change. This does not include message numbers, nor does it include attributes that can be set by a STORE command (e.g., FLAGS).2.3.1.2. Message Sequence Number Message Attribute A relative position from 1 to the number of messages in the mailbox. This position MUST be ordered by ascending unique identifier. As each new message is added, it is assigned a message sequence number that is 1 higher than the number of messages in the mailbox before that new message was added. Message sequence numbers can be reassigned during the session. For example, when a message is permanently removed (expunged) from the mailbox, the message sequence number for all subsequent messages is decremented. The number of messages in the mailbox is also decremented. Similarly, a new message can be assigned a message sequence number that was once held by some other message prior to an expunge. In addition to accessing messages by relative position in the mailbox, message sequence numbers can be used in mathematical calculations. For example, if an untagged "11 EXISTS" is received, and previously an untagged "8 EXISTS" was received, three new messages have arrived with message sequence numbers of 9, 10, and 11. Another example, if message 287 in a 523 message mailbox has UID 12345, there are exactly 286 messages which have lesser UIDs and 236 messages which have greater UIDs.Crispin Standards Track [Page 10]RFC 3501 IMAPv4 March 20032.3.2. Flags Message Attribute A list of zero or more named tokens associated with the message. A flag is set by its addition to this list, and is cleared by its removal. There are two types of flags in IMAP4rev1. A flag of either type can be permanent or session-only. A system flag is a flag name that is pre-defined in this specification. All system flags begin with "\". Certain system flags (\Deleted and \Seen) have special semantics described elsewhere. The currently-defined system flags are: \Seen Message has been read \Answered Message has been answered \Flagged Message is "flagged" for urgent/special attention \Deleted Message is "deleted" for removal by later EXPUNGE \Draft Message has not completed composition (marked as a draft). \Recent Message is "recently" arrived in this mailbox. This session is the first session to have been notified about this message; if the session is read-write, subsequent sessions will not see \Recent set for this message. This flag can not be altered by the client. If it is not possible to determine whether or not this session is the first session to be notified about a message, then that message SHOULD be considered recent. If multiple connections have the same mailbox selected simultaneously, it is undefined which of these connections will see newly-arrived messages with \Recent set and which will see it without \Recent set. A keyword is defined by the server implementation. Keywords do not begin with "\". Servers MAY permit the client to define new keywords in the mailbox (see the description of the PERMANENTFLAGS response code for more information).Crispin Standards Track [Page 11]RFC 3501 IMAPv4 March 2003 A flag can be permanent or session-only on a per-flag basis. Permanent flags are those which the client can add or remove from the message flags permanently; that is, concurrent and subsequent sessions will see any change in permanent flags. Changes to session flags are valid only in that session. Note: The \Recent system flag is a special case of a session flag. \Recent can not be used as an argument in a STORE or APPEND command, and thus can not be changed at all.2.3.3. Internal Date Message Attribute The internal date and time of the message on the server. This is not the date and time in the [RFC-2822] header, but rather a date and time which reflects when the message was received. In
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -