📄 rfc4616.txt
字号:
The second example shows how the PLAIN mechanism might be used to attempt to assume the identity of another user. In this example, the server rejects the request. Also, this example makes use of the protocol optional initial response capability to eliminate a round- trip. S: * ACAP (SASL "CRAM-MD5") (STARTTLS) C: a001 STARTTLS S: a001 OK "Begin TLS negotiation now" <TLS negotiation, further commands are under TLS layer> S: * ACAP (SASL "CRAM-MD5" "PLAIN") C: a002 AUTHENTICATE "PLAIN" {20+} C: Ursel<NUL>Kurt<NUL>xipj3plmq S: a002 NO "Not authorized to requested authorization identity"5. Security Considerations As the PLAIN mechanism itself provided no integrity or confidentiality protections, it should not be used without adequate external data security protection, such as TLS services provided by many application-layer protocols. By default, implementations SHOULD NOT advertise and SHOULD NOT make use of the PLAIN mechanism unless adequate data security services are in place.Zeilenga Standards Track [Page 6]RFC 4616 The PLAIN SASL Mechanism August 2006 When the PLAIN mechanism is used, the server gains the ability to impersonate the user to all services with the same password regardless of any encryption provided by TLS or other confidentiality protection mechanisms. Whereas many other authentication mechanisms have similar weaknesses, stronger SASL mechanisms address this issue. Clients are encouraged to have an operational mode where all mechanisms that are likely to reveal the user's password to the server are disabled. General [SASL] security considerations apply to this mechanism. Unicode, [UTF-8], and [StringPrep] security considerations also apply.6. IANA Considerations The SASL Mechanism registry [IANA-SASL] entry for the PLAIN mechanism has been updated by the IANA to reflect that this document now provides its technical specification. To: iana@iana.org Subject: Updated Registration of SASL mechanism PLAIN SASL mechanism name: PLAIN Security considerations: See RFC 4616. Published specification (optional, recommended): RFC 4616 Person & email address to contact for further information: Kurt Zeilenga <kurt@openldap.org> IETF SASL WG <ietf-sasl@imc.org> Intended usage: COMMON Author/Change controller: IESG <iesg@ietf.org> Note: Updates existing entry for PLAIN7. Acknowledgements This document is a revision of RFC 2595 by Chris Newman. Portions of the grammar defined in Section 2 were borrowed from [UTF-8] by Francois Yergeau. This document is a product of the IETF Simple Authentication and Security Layer (SASL) Working Group.Zeilenga Standards Track [Page 7]RFC 4616 The PLAIN SASL Mechanism August 20068. Normative References [ABNF] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", RFC 4234, October 2005. [Keywords] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [SASL] Melnikov, A., Ed., and K. Zeilenga, Ed., "Simple Authentication and Security Layer (SASL)", RFC 4422, June 2006. [SASLPrep] Zeilenga, K., "SASLprep: Stringprep Profile for User Names and Passwords", RFC 4013, February 2005. [StringPrep] Hoffman, P. and M. Blanchet, "Preparation of Internationalized Strings ("stringprep")", RFC 3454, December 2002. [Unicode] The Unicode Consortium, "The Unicode Standard, Version 3.2.0" is defined by "The Unicode Standard, Version 3.0" (Reading, MA, Addison-Wesley, 2000. ISBN 0-201- 61633-5), as amended by the "Unicode Standard Annex #27: Unicode 3.1" (http://www.unicode.org/reports/tr27/) and by the "Unicode Standard Annex #28: Unicode 3.2" (http://www.unicode.org/reports/tr28/). [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003. [TLS] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.1", RFC 4346, April 2006.9. Informative References [ACAP] Newman, C. and J. Myers, "ACAP -- Application Configuration Access Protocol", RFC 2244, November 1997. [CRAM-MD5] Nerenberg, L., Ed., "The CRAM-MD5 SASL Mechanism", Work in Progress, June 2006. [DIGEST-MD5] Melnikov, A., Ed., "Using Digest Authentication as a SASL Mechanism", Work in Progress, June 2006.Zeilenga Standards Track [Page 8]RFC 4616 The PLAIN SASL Mechanism August 2006 [IANA-SASL] IANA, "SIMPLE AUTHENTICATION AND SECURITY LAYER (SASL) MECHANISMS", <http://www.iana.org/assignments/sasl-mechanisms>. [SMTP-AUTH] Myers, J., "SMTP Service Extension for Authentication", RFC 2554, March 1999.Zeilenga Standards Track [Page 9]RFC 4616 The PLAIN SASL Mechanism August 2006Appendix A. Changes since RFC 2595 This appendix is non-normative. This document replaces Section 6 of RFC 2595. The specification details how the server is to compare client- provided character strings with stored character strings. The ABNF grammar was updated. In particular, the grammar now allows LINE FEED (U+000A) and CARRIAGE RETURN (U+000D) characters in the authzid, authcid, passwd productions. However, whether these control characters may be used depends on the string preparation rules applicable to the production. For passwd and authcid productions, control characters are prohibited. For authzid, one must consult the application-level SASL profile. This change allows PLAIN to carry all possible authorization identity strings allowed in SASL. Pseudo-code was added. The example section was expanded to illustrate more features of the PLAIN mechanism.Editor's Address Kurt D. Zeilenga OpenLDAP Foundation EMail: Kurt@OpenLDAP.orgZeilenga Standards Track [Page 10]RFC 4616 The PLAIN SASL Mechanism August 2006Full Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.Acknowledgement Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).Zeilenga Standards Track [Page 11]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -