📄 fdnewtnd.m
字号:
function [x, ithist, iflag] = fdnewtnd( f, x, tolf, tolx, maxit )%% function [x, ithist, iflag] = fdnewtnd( f, x, tolf, tolx, maxit )%% fdnewtnd attempts to compute a root of F using a finite difference % Newton method%% Input parameters:% f name of a matlab function that evaluates % f and its derivative.% x initial iterate% tolf stopping tolerance (optional. Default tolf = 1.e-7)% Newton's method stops if ||F(x)||_2 < tolf% tolx stopping tolerance (optional. Default tolx = 1.e-7)% Newton's method stops if ||s||_2 < tolx, % where s = -F'(x)^{-1} F(x) is the Newton step.% maxit maximum number of iterations (optional. Default maxit = 100)%%% Output parameters:% x approximation of the solution. % ithist array with the iteration history% The i-th row of ithist contains % [it, norm(x), norm(F), norm(t*s), t]% ifag return flag% iflag = 0 ||F(x)||_2 <= tolf % iflag = 1 iteration terminated because maximum number of % iterations was reached. ||F(x)||_2 > tolf %% iflag = 2 iteration terminated because no step size was found%% Matthias Heinkenschloss% Department of Computational and Applied Mathematics% Rice University% March 11, 2004%% set tolerances if necessaryif( nargin <= 3 ) tolf = 1.e-7; tolx = 1.e-7; maxit = 100; endif( nargin <= 4 ) tolx = 1.e-7; maxit = 100; endif( nargin <= 5 ) maxit = 100; end it = 0;iflag = 0;F = feval(f, x);% compute finite difference approximation of the Jacobianh = sqrt(eps)*norm(x);Jac = zeros(length(x),length(x));for j = 1:length(x) xtmp = x; xtmp(j) = xtmp(j) + h; Jac(:,j) = feval(f, xtmp); Jac(:,j) = (Jac(:,j) - F)/h;end normF = norm(F);s = tolx*ones(size(x));t = 1;while( it < maxit & norm(t*s) > tolx & normF > tolf ) s = - (Jac\F); t = 1; xtmp = x+s; F = feval(f, xtmp); while ( norm(F)^2 > (1-t*2.e-4)*normF^2 & norm(t*s) > tolx ) t = t/2; xtmp = x+t*s; F = feval(f, xtmp); end ithist(it+1,:) = [it, norm(x), normF, norm(t*s), t]; x = xtmp; it = it+1; normF = norm(F); % compute finite difference approximation of the Jacobian h = sqrt(eps)*norm(x); Jac = zeros(length(x),length(x)); for j = 1:length(x) xtmp = x; xtmp(j) = xtmp(j) + h; Jac(:,j) = feval(f, xtmp); Jac(:,j) = (Jac(:,j) - F)/h; end end% check why the FD-Newton method truncated and set iflagif( norm(F) > tolf ) % FD-Newton method truncated because the maximum number of iterations % was reached iflag = 1; returnelseif( norm(t*s) > tolx & t < 1 ) iflag = 2; returnelse % FD-Newton method truncated because norm(F) <= tolf % print info for last iteration ithist(it+1,:) = [it, norm(x), norm(F),0,0];end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -