⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fdnewtnd.m

📁 linear equation routines in matlab
💻 M
字号:
function [x, ithist, iflag] = fdnewtnd( f, x, tolf, tolx, maxit )%%  function [x, ithist, iflag] = fdnewtnd( f, x, tolf, tolx, maxit )%%  fdnewtnd attempts to compute a root of F using a finite difference %  Newton method%%  Input parameters:%    f       name of a matlab function that evaluates %            f and its derivative.%    x       initial iterate%    tolf    stopping tolerance (optional. Default tolf = 1.e-7)%            Newton's method stops if  ||F(x)||_2 < tolf%    tolx    stopping tolerance (optional. Default tolx = 1.e-7)%            Newton's method stops if  ||s||_2 < tolx, %            where s = -F'(x)^{-1} F(x)  is the Newton step.%    maxit   maximum number of iterations (optional. Default maxit = 100)%%%  Output parameters:%    x       approximation of the solution. %    ithist  array with the iteration history%            The i-th row of ithist contains  %                        [it, norm(x), norm(F), norm(t*s), t]%    ifag    return flag%            iflag =  0  ||F(x)||_2 <= tolf %            iflag =  1  iteration terminated because maximum number of %                        iterations was reached. ||F(x)||_2 > tolf %%            iflag =  2  iteration terminated because no step size was found%%  Matthias Heinkenschloss%  Department of Computational and Applied Mathematics%  Rice University%  March 11, 2004%% set tolerances if necessaryif( nargin <= 3 ) tolf = 1.e-7; tolx = 1.e-7; maxit = 100; endif( nargin <= 4 ) tolx = 1.e-7; maxit = 100; endif( nargin <= 5 ) maxit = 100; end   it       = 0;iflag    = 0;F        = feval(f, x);% compute finite difference approximation of the Jacobianh        = sqrt(eps)*norm(x);Jac      = zeros(length(x),length(x));for j = 1:length(x)    xtmp = x;    xtmp(j)  = xtmp(j) + h;    Jac(:,j) = feval(f, xtmp);    Jac(:,j) = (Jac(:,j) - F)/h;end    normF    = norm(F);s        = tolx*ones(size(x));t        = 1;while( it < maxit & norm(t*s) > tolx & normF > tolf )      s     = - (Jac\F);      t    = 1;   xtmp = x+s;   F    = feval(f, xtmp);   while ( norm(F)^2 > (1-t*2.e-4)*normF^2 & norm(t*s) > tolx )        t    = t/2;        xtmp = x+t*s;        F    = feval(f, xtmp);   end   ithist(it+1,:) = [it, norm(x), normF, norm(t*s), t];      x  = xtmp;   it = it+1;   normF    = norm(F);   % compute finite difference approximation of the Jacobian   h        = sqrt(eps)*norm(x);   Jac      = zeros(length(x),length(x));   for j = 1:length(x)       xtmp = x;       xtmp(j)  = xtmp(j) + h;       Jac(:,j) = feval(f, xtmp);       Jac(:,j) = (Jac(:,j) - F)/h;   end   end% check why the FD-Newton method truncated and set iflagif( norm(F) > tolf )    % FD-Newton method truncated because the maximum number of iterations    % was reached    iflag = 1;    returnelseif( norm(t*s) > tolx & t < 1 )    iflag = 2;    returnelse    % FD-Newton method truncated because norm(F) <= tolf    % print info for last iteration    ithist(it+1,:) = [it, norm(x), norm(F),0,0];end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -