📄 shamnd.m
字号:
function [x, ithist, iflag] = shamnd( f, x, m, tolf, tolx, maxit )%% function [x, ithist, iflag] = shamnd( f, x, m, tolf, tolx, maxit )%% shamnd attempts to compute a root of F using Shamanskii's method%% Input parameters:% f name of a matlab function that evaluates % f and its derivative.% x initial iterate% m number of iterations after which jacobian is recomputed% (m = 1: Newton's method; m = maxit : Chord method)% tolf stopping tolerance (optional. Default tolf = 1.e-7)% Newton's method stops if |f(x)| < tolf% tolx stopping tolerance (optional. Default tolx = 1.e-7)% Newton's method stops if |s| < tolx.% maxit maximum number of iterations (optional. Default maxit = 100)%%% Output parameters:% x approximation of the solution. % ithist array with the iteration history% The i-th row of ithist contains [it, x, F, s]% ifag return flag% iflag = 0 ||F(x)||_2 <= tolf % iflag = 1 iteration terminated because maximum number of % iterations was reached. ||F(x)||_2 > tolf %% Matthias Heinkenschloss% Department of Computational and Applied Mathematics% Rice University% March 9, 2004%% set tolerances if necessaryif( nargin <= 4 ) tolf = 1.e-7; tolx = 1.e-7; maxit = 100; endif( nargin <= 5 ) tolx = 1.e-7; maxit = 100; endif( nargin <= 6 ) maxit = 100; end it = 0;iflag = 0;norms = 2*tolx;[F,Jac] = feval(f, x);[L,U] = lu(Jac); while( it < maxit & norms > tolx & norm(F) > tolf ) s = - (U\(L\F)); norms = norm(s); ithist(it+1,:) = [it, norm(x), norm(F), norms]; x = x+s; it = it+1; if( mod(it,m) == 0 ) [F,Jac] = feval(f, x); [L,U] = lu(Jac); else [F] = feval(f, x); endend% check why the Shamanskii's method truncated and set iflagif( norm(F) > tolf ) % Shamanskii's method truncated because the maximum number of iterations % was reached iflag = 1; returnelse % Shamanskii's method truncated because norm(F) <= tolf % print info for last iteration ithist(it+1,:) = [it, norm(x), norm(F),0];end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -