📄 csplineeval.m
字号:
%% Evaluate the cubic spline which on [ x(i) , x(i+1) ] is defined by%% S(z) = a(i) + b(i)*(z-x(i)) + c(i)*(z-x(i))^2 + d(i)*(z-x(i))^3%% at given points z%% function [s] = csplineeval( x, a, b, c, d, z )%% input:% x: vector containing the % interpolation points%% a: vector containing the % coefficients a(i)%% b: vector containing the % coefficients b(i)%% c: vector containing the % coefficients c(i)%% d: vector containing the % coefficients d(i)%% z: vector containing the % points at which the spline has to evaluated%% output:% s: value of the spline at the points z% if z(i) is not contained in the interval [ x(1), x(n) ],% then s(i) is set to NaN.%%function [s] = csplineeval( x, a, b, c, d, z );n = size(x(:),1);m = size(z(:),1);for i = 1:m if( z(i) >= x(1) & z(i) <= x(n) ) j = 1; while z(i) > x(j+1) j = j+1; end t = z(i) - x(j); s(i) = ((d(j)*t+c(j))*t+b(j))*t+a(j); else s(i) = NaN; endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -