📄 tridiagldlsl.m
字号:
%% tridiagLDLsl.m%% Compute the solution of the symmetric tridiagonal linear system % A x = b% The LDL^T decomposition without pivoting of the symmetric tridiagonal% matrix A has to be computed by tridiagLDL.m. %%% function [b, iflag] = tridiagLDLsl( d, e, b )%% input:% e: subdiagonal of L%% d: diagonal of U%% output:% b: solution of the linear system%% iflag: error flag% iflag = 0 LU decomposition could be computed% iflag = 1 dimension of b does not match dimension of A% iflag > 1 zero pivot element detected in row iflag+1%function [b, iflag] = tridiagLDLsl( d, e, b );iflag = 0;% get size of A and check dimensionsn = size(d(:),1);if ( n ~= size(b(:),1) ) iflag = 1; returnend% Solve L y = b (overwite b with result)for i = 2:n b(i) = b(i) - e(i-1) * b(i-1);end% Solve D L^T x = y (overwite b with result)b(n) = b(n) / d(n);for i = n-1:-1:1 b(i) = b(i)/d(i) - e(i) * b(i+1);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -