📄 csflow.cpp
字号:
/* 计算式(4-89)中的Jij (=Nij) */
jm[f2(2*i-1,2*j-1,n0)]=jm[f2(2*i,2*j,n0)];
}
else /* i是PV结点 */
{
/* 计算式(4-89)中的Rij (=0) */
jm[f2(2*i-1,2*j-1,n0)]=0;
/* 计算式(4-89)中的Sij (=0) */
jm[f2(2*i-1,2*j,n0)]=0;
}
}
}
}
if(k!=1)
{
return;
}
/* 输出Jacoby矩阵 */
fprintf(fp,"\n J MATRIX(C)");
for(io=1;io<=n0;io+=5)
{
i1=(io+4)>n0?n0:(io+4);
fprintf(fp,"\n");
for(j=io;j<=i1;j++)
{
fprintf(fp,"%10d",j);
}
for(i=1;i<=n0;i++)
{
fprintf(fp,"\n%2d",i);
for(j=io;j<=i1;j++)
{
fprintf(fp,"%12.6f",jm[f2(i,j,n0)]);
}
}
}
fprintf(fp,"\n");
}
/**********************************************
* 本子程序用选列主元素的高斯消元法求解组 *
* 性方程组求各结点电压修正量,如打印参数K=1,则*
* 输出增广矩阵变换中的上三角及电压修正量.如果*
* 无唯一解,则给出信息,并停止程序运行. *
**********************************************/
void sevc ( float a[], int n0, int k, int n1)
{
extern FILE *file4;
FILE *fp;
int i,j,l,n2,n3,n4,i0,io,j1,i1;
float t0,t,c;
if(file4==NULL) fp=stdout;
else fp=file4;
for(i=1;i<=n0;i++)
{
l=i;
for(j=i;j<=n0;j++)
{
if( fabs(a[f2(j,i,n1)]) > fabs(a[f2(l,i,n1)]) )
{
l=j; /* 找到这列中的最大元 */
}
}
if(l!=i)
{ /* 行交换 */
for (j=i;j<=n1;j++)
{
t=a[f2(i,j,n1)];
a[f2(i,j,n1)]=a[f2(l,j,n1)];
a[f2(l,j,n1)]=t;
}
}
if (fabs(a[f2(i,i,n1)]-0)<1e-10)
{ /* 对角元近似于0, 无解 */
printf("\nNo Solution\n");
//exit (1);
}
t0=a[f2(i,i,n1)];
for(j=i;j<=n1;j++)
{
/* 除对角元 */
a[f2(i,j,n1)]/=t0;
}
if(i==n0)
{ /* 最后一行,不用消元 */
continue;
}
/* 消元 */
j1=i+1;
for(i1=j1;i1<=n0;i1++)
{
c=a[f2(i1,i,n1)];
for(j=i;j<=n1;j++)
{
a[f2(i1,j,n1)] -= a[f2(i,j,n1)] *c;
}
}
}
if(k==1)
{ /* 输出上三角矩阵 */
fprintf(fp,"\nTrianglar Angmentex Matrix ");
for(io=1;io<=n1;io+=5)
{
i0=(io+4)>n1?n1:(io+4);
fprintf(fp,"\n");
fprintf(fp," ");
for(i=io;i<=i0;i++)
{
fprintf(fp,"%12d",i);
}
for(i=1;i<=n0;i++)
{
fprintf(fp,"\n");
fprintf(fp,"%2d",i);
for(j=io;j<=i0;j++)
{
fprintf(fp,"%15.6f", a[f2(i,j,n1)]);
}
}
}
}
/* 回代求方程解 */
n2=n1-2;
for(i=1;i<=n2;i++)
{
n3=n1-i;
for(i1=n3;i1<=n0;i1++)
{
n4=n0-i;
a[f2(n4,n1,n1)] -= a[f2(i1,n1,n1)]*a[f2(n4,i1,n1)];
}
}
if(k!=1)
{
return;
}
/* 输出电压修正值 */
fprintf(fp,"\nVoltage correction E(i), F(i) :");
for(io=1;io<=n0;io+=4)
{
i1=(io+1)/2;
i0=((io+3)/2)>(n0/2)?(n0/2):((io+3)/2);
fprintf(fp,"\n");
for(j=i1;j<=i0;j++)
{
fprintf(fp,"%16d%16d",j,j);
}
i1 = 2*i0;
fprintf(fp,"\n");
for(i=io;i<=i1;i++)
{
fprintf(fp,"%15.6f", a[f2(i,n1,n1)]);
}
}
}
/****************************************************
* 本子程序计算线路功率,平衡节点功率,PV节点无功功 *
* 率及线路的功率损耗并输出.如选择参数K1=1,则表示输 *
* 入为极座标. *
****************************************************/
#define Pi 3.1415927/180
void plsc(int n,int l,int m,float g[],float b[],float e[],float f[],\
int e1[],int s1[],float g1[],float b1[],float c1[],float c[],\
float co[],float p1[],float q1[],float p2[],float q2[],float p3[],\
float q3[],float p[],float q[],float v[],float angle[],int k1)
{
extern FILE *file4;/**file6;*/
FILE *fp;
float t1,t2,cm,x,y,z,x1,x2,y1,y2;
int i,i1,j,m1,ns,pos1,pos2,km,st,en;
ns=n-1;
if(file4==NULL)
{
fp=stdout;
}
else
{
fp=file4;
}
fprintf(fp,"\nTHE RESULT ARE:");
if(k1==1)
{
for(i=0;i<n;i++)
{
angle[i]*=Pi;
e[i]=v[i]*cos(angle[i]);
f[i]=v[i]*sin(angle[i]);
}
}
t1=0.0;t2=0.0;
for(i=1;i<=n;i++)
{
pos1=f1(i);pos2=f2(n,i,n);
t1+=g[pos2]*e[pos1]-b[pos2]*f[pos1];
t2+=g[pos2]*f[pos1]+b[pos2]*e[pos1];
}
pos1=f1(n);
p[pos1]=t1*e[pos1];
q[pos1]=-t2*e[pos1];
m1=m+1;
for(i1=m1;i1<=ns;i1++)
{
t1=0;t2=0;
for(i=1;i<=n;i++)
{
pos1=f1(i);pos2=f2(i1,i,n);
t1+=g[pos2]*e[pos1]-b[pos2]*f[pos1];
t2+=g[pos2]*f[pos1]+b[pos2]*e[pos1];
}
pos1=f1(i1);
q[pos1]=f[pos1]*t1-e[pos1]*t2;
}
for(i=0;i<n; i++)
{
cm=co[i];
if(cm!=0)
{
q[i]-=(e[i]*e[i]+f[i]*f[i])*cm;
}
}
fprintf(fp,"\nBUS DATA");
fprintf(fp,"\nBUS VOLTAGE ANGLE(DEGS.) BUS P BUS Q");
for(i=0;i<n;i++)
{
v[i]=sqrt(e[i]*e[i]+f[i]*f[i]);
x=e[i];
y=f[i];
z=y/x;
angle[i]=atan(z);
angle[i]/=Pi;
fprintf(fp,"\n%3d%13.5e%15.5f%15.5e%15.5e",i+1,v[i],angle[i],p[i],q[i]);
}
fprintf(fp,"\n LINE FLOW ");
for(i=1;i<=l;i++)
{
pos1=f1(i);
st=s1[pos1];
en=e1[pos1];
x1=e[f1(st)]*e[f1(st)]+f[f1(st)]*f[f1(st)];
x2=e[f1(en)]*e[f1(en)]+f[f1(en)]*f[f1(en)];
y1=e[f1(st)]*e[f1(en)]+f[f1(st)]*f[f1(en)];
y2=f[f1(st)]*e[f1(en)]-e[f1(st)]*f[f1(en)];
p1[pos1]=(x1-y1)*g1[pos1]-y2*b1[pos1];
q1[pos1]=-x1*(c1[pos1]+b1[pos1])+y1*b1[pos1]-y2*g1[pos1];
p2[pos1]=(x2-y1)*g1[pos1]+y2*b1[pos1];
q2[pos1]=-x2*(c1[pos1]+b1[pos1])+y1*b1[pos1]+y2*g1[pos1];
for(j=1;j<=n;j++)
{
cm=c[f2(j,i,l)];
if(cm!=0.0)
{
km=1;
if(en==j)
{
km=2;
}
if(km==1)
{
q1[pos1]-=(e[f1(j)]*e[f1(j)]+f[f1(j)]*f[f1(j)])*cm;
}
else
{
q2[pos1]-=(e[f1(j)]*e[f1(j)]+f[f1(j)]*f[f1(j)])*cm;
}
}
}
p3[pos1]=p1[pos1]+p2[pos1] ;
q3[pos1]=q1[pos1]+q2[pos1] ;
fprintf(fp,"\n%2d%8d%11d %13.6e %13.6e %13.6e %13.6e\n%10d%11d %13.6e %13.6e",\
i,s1[pos1],e1[pos1],p1[pos1],q1[pos1],p3[pos1],q3[pos1],\
e1[pos1],s1[pos1],p2[pos1],q2[pos1]);
}
}
#define L 5 //网络的支路总数
#define N 5 //节点数
#define M 3 //网络的PQ节点数
#define N0 2*(N-1) //雅可比矩阵的行数
#define N1 N0+1
int _tmain(int argc, _TCHAR* argv[])
{
int K=0; //打印开关.K=1,则打印;否则,不打印
int K1=0; //子程序PLSC中判断输入电压的形式;K1=1,则为极座标形式.否则为直角坐标形式.
float D=1e-4; //有功及无功功率误差的最大值(绝对值).
float *DD; //误差量最大者
float p=1.0;;
DD=&p;
float G[f2(N,N,N)+1]; //Ybus的电导元素(实部).
float B[f2(N,N,N)+1]; //Ybus的电纳元素(虚部).
float G1[L]={0.624024,0.754717,0.829876,0,0}; //第I支路的串联电导.
float B1[L]={-3.900156,-2.641509,-3.112033,-63.492063,-31.746032}; //第I支路的串联电纳
//float C1[L]={0.25,0,0.25,3.023432,1.511716}; //C1(I)第I支路的pie型对称接地电纳.?????????
float C1[L]={0.25,0,0.25,0,0}; //C1(I)第I支路的pie型对称接地电纳
//float C[f2(N,L,L)+1]={0,0,0,0,0, 0,0,0,3.023432,0, 0,0,0,0,0,
// 0,0,0,-6.198035, 0,0,0,0,0,-3.099017}; //C(I,J)第I节点J支路不对称接地电纳. ???????
float C[f2(N,L,L)+1]={0,0,0,0,0, 0,0,0,3.023432,0, 0,0,0,0,1.511716,
0,0,0,-3.174603,0, 0,0,0,0,-1.587302}; //C(I,J)第I节点J支路不对称接地电纳
float CO[N]={0,0,0,0,0}; //CO(I) :第I节点的接地电纳
int S1[L]={1,1,2,2,3}; //第I支路的起始节点号
int E1[L]={2,3,3,4,5}; //第I支路的终止节点号
float P[N]={-1.6,-2,-3.7,5.0,0}; //第I节点的注入有功功率
float Q[N]={-0.8,-1,-1.3,0,0}; //第I节点的注入无功功率
float P0[N]={0}; //第I节点有功功率误差
float V0[N]={0}; //第I节点(PV节点)的电压误差(平方误差)
float V[N]={1,1,1,1.05,1.05}; //第I节点的电压幅值
//float E[N]={1,1,1,1.05,1.05}; //第I节点的电压的实部
float E[N]={1,1,1,1,1.05}; //第I节点的电压的实部
float F[N]={0,0,0,0,0}; //第I节点的电压的虚部
float JM[f2(N0,N0,N0)+1]; //Jacoby矩阵的第I行J列元素
float A[f2(2*N-2,2*N-1,2*N-1)+1]={0}; //A(I,J)修正方程的增广矩阵,三角化矩阵的第I行J列元素,
//运算结束后A矩阵的最后一列存放修正的解.
float P1[L]; //第I支路由S1(I)节点注入的有功功率
float Q1[L]; //第I支路由S1(I)节点注入的无功功率
float P2[L]; //第I支路由E1(I)节点注入的有功功率
float Q2[L]; //第I支路由E1(I)节点注入的无功功率
float P3[L]; //第I支路的有功功率损耗
float Q3[L]; //第I支路的无功功率损耗
float ANGLE[N]; //第I节点电压的角度
float Q0[N]={0}; //第I节点有功功率误差
int ii,jj;
int cnt=0; //迭代次数
file4=fopen("cs_flow_1.txt","w");
ybus(N,L,M,G,B,G1,B1,C1,C,CO,1,S1,E1);//计算电导和导纳参数
dpqc(P,Q,P0,Q0,V,V0,M,N,E,F,1,G,B,DD);
//while (arrayMax(N,Q0)>D || arrayMax(N,P0)>D){
while (*(DD)>D){
cnt++;
jmcc(M,N,N0,E,F,G,B,JM,1);//算jacob矩阵
//算增广的修正方程矩阵,最后一列放误差向量,与书上的方程顺序稍有不同
for (ii=1;ii<=N0;ii++){
for(jj=1;jj<=N0;jj++){
A[f2(ii,jj,N1)]=JM[f2(ii,jj,N0)];
}
}
for(ii=1;ii<=N0;ii++){
if(ii<=2*M){
if(ii%2==1) A[f2(ii,2*N-1,2*N-1)]=Q0[f1((ii+1)/2)];
else A[f2(ii,2*N-1,2*N-1)]=P0[f1(ii/2)];
}
else{
if(ii%2==1) A[f2(ii,2*N-1,2*N-1)]=V0[f1((ii+1)/2)];
else A[f2(ii,2*N-1,2*N-1)]=P0[f1(ii/2)];
}
}
sevc(A,N0,1,N1);//解线性方程组
for(ii=1;ii<=N0;ii++){
if(ii%2==1){
E[f1((ii+1)/2)]-=A[f2(ii,2*N-1,2*N-1)];
}
else F[f1(ii/2)]-=A[f2(ii,2*N-1,2*N-1)];
}//修正解
dpqc(P,Q,P0,Q0,V,V0,M,N,E,F,1,G,B,DD);//重新计算误差
}
/*float Atest[f2(4,5,5)+1]={1,2,0,0,1, 0,1,0,0,2, 0,0,1,0,1, 2,0,0,1,1};
sevc ( Atest, 4, 1, 5);*/
plsc( N, L, M, G , B , E , F ,\
E1 , S1 , G1 , B1 , C1 , C ,\
CO , P1 , Q1 , P2 , Q2 , P3 ,\
Q3 , P , Q , V , ANGLE , K1);
//file4=fclose("cs_flow_1");
extern FILE *file4;/**file6;*/
/*FILE *fp;
if(file4==NULL) fp=stdout;
else fp=file4;
fprintf(fp,"\n迭代总次数为:");
fprintf(fp,"%d",cnt);*/
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -