📄 mgs.m
字号:
function [Q,R] = mgs(A)
%
% Compute the Gram-Schmidt orthogonalization of the
% columns of A, assuming nonzero columns of A
% using the modified Gram-Schmidt algorithm. A = QR
%
% function [Q,R] = mgs(A)
%
% A = matrix to be factored
%
% Q = orthogonal matrix
% R = upper triangular
% Copyright 1999 by Todd K. Moon
[m,n] = size(A)
R = []; Q = []; % initialize
for k=1:n
R(k,k) = norm(A(:,k));
if(R(k,k))
Q(:,k) = A(:,k)/R(k,k);
else
Q(:,k) = zeros(m,1);
end
for j=k+1:n
R(k,j) = Q(:,k)'*A(:,j);
A(:,j) = A(:,j) - Q(:,k)*R(k,j);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -