📄 readme
字号:
% Try some data for a rationally-interpolated filter
res.m
%
% Computes <a^n>_m
%
% function d = res(a,n,m)
%
% a = value
% n = exponent
% m = modulo
%
% d = remainder(a^n,m0
schurcohn.m
%
% Returns 1 if p is a Schur polynomial (all roots inside unit circle)
%
% function stable = schurcohn(p)
%
% p = polynomial coefficients
%
% stable = 1 if stable polynomial
simppivot.m
%
% Pivot a linear programming tableau about the p,q entry
%
% function tableau = simppivot(intableau,p,q)
%
% intableau = tableau
% (p,q) = point about which to pivot
%
% tableau = pivoted tableau
solvlincong.m
%
% Ddetermine the solution to the linear congruence
% a x equiv b (mod m), if it exists
%
% function x = solvlincong(a,m,b)
sreal.m
% sysreal.m
% data for the system identification example in the SVD stuff
sreal1.m
% SVD realization
sugiyama.m
%
% Compute the GCD g = (b,c) using the Euclidean algorithm
% and return s,t such that bs+ct = g, where b and c are polynomials
% with real coefficients
%
% thresh = (optional) threshold argument used to truncate small remainders
sysidsvd2.m
%
% given a sequence of impulse responses in h (a cell array)
% identify a system (A,B,C)
% This uses the tohankel method of finding a nearest hankel matrix
% of desired rank
%
% function [A,B,C] = sysidsvd(h,order)
%
% h = impulse response sequence (cell array)
% order = desired order of system
%
% (A,B,C) = system
taylorf.mm
(* example of a taylor series *)
tocrt.m
%
% Compute the representation of the scalar x using the
% using the Chinese Remainder Theorem (CRT) with
% moduli m = [m1,m2,...,mr]. It is assumed (without checking)
% that the moduli are relatively prime
%
% function y = tocrt(x,m)
%
% x = number to convert
% m = set of moduli
%
% y = CRT representation of x
tocrtpoly.m
%
% Compute the representation of the polynomial f using the
% using the Chinese Remainder Theorem (CRT) with
% moduli m = {m1,m2,...,mr}. It is assumed (without checking)
% that the moduli are relatively prime.
% m is passed in as a cell array containing polynomial vectors
% and y is returned as a cell array containing polynomial vectors
%
% function y = tocrt(f,m)
%
% f = polynomial
% m = set of modulo polynomials
%
% y = CRT form of f
tohankelbig.m
%
% Determine the matrix nearest to A which is (block) Hankel and has rank r
% using the composite mapping algorithm
%
% function A = tohankelbig(A,r)
%
% A = input matrix
% r = desired ranke
% d = (optional) block size (default=1)
%
% A = nearest rank r Hankel matrix
% diff = norm of difference between matrices
triginterp.m
% demonstrate trigonometric interpolation
vandsolve1.m
%
% Solves the equation Vx = fs, where V is the Vandermonde
% matrix determined from ts.
%
% function a = vandsolve1(ts,fs)
%
% ts = abscissa values
% fs = ordinate values
%
% a = solution
vitnop.m
%
% Compute the norm of the difference between inputs
% This function may be feval'ed for use with the Viterbi algorithm
% In this case, the norm is simply taken as the branch number
%
% function d = vitnop(branch,input)
%
vitsqnorm.m
%
% Compute the square norm of the difference between inputs
% This function may be feval'ed for use with the Viterbi algorithm
% (state and nextstate are not used here)
%
% function d = vitsqnorm(branch,input,state,nextstate)
wino3by3.m
%
% Convolve the 3-sequence a with the 3-sequence b
% a and b are both assumed to be column vectors
% using Winograd convolution
%
% function c = wino3by3(a,b)
winotest.m
% Set up data for a Winograd convolution algorithm
winotest2.m
% Set up data for a Winograd convolution algorithm
***************************************************************
Directory: mkpict
***************************************************************
attract1.m
% a plot showing an attractor
attract2.m
% a plot showing an attractor
bayes1.m
% Bayes decision tests
bayes2.m
% Bayes decision tests for Gaussian
bayes4.m
% show the decision regions for a 3-way test
binchan.m
%
% Data for Bayesian detection on the binary channel
binchanex.m
% data for binary channel
chebyplot.m
% Plot Chebyshev polynomials
chi2plot.m
%
% Plot the chi-squared r.v.
compmap3.m
% make figure comppos1
condhilb.m
% Plot the condition of the Hilbert matrix
drawtrellis.m
%
% Draw a trellis in LaTeX picture mode
%
% function drawtrellis(fid,numbranch,r,p)
%
% fid = output file id
% numbranch = number of branches to draw
% r = path cost values
% p = flag
%
% Other values are contained in global variables. See the file
drawtrelpiece.m
%
% Draw a piece of a trellis in LaTeX picture mode
%
% fname = file name
% trellis = trellis description
% branchweight = weights of branches
drawvit.m
% Program to draw the paths for the Viterbi algorithm using a LaTeX picture
duality1.m
% Make a plot illustrating duality
eigdir.m
% make a contour plot of eigenstuff
eigdir2.m
% make a contour plot of eigenstuff
eigdirex.m
% make a contour plot of eigenstuff
eigdist.m
% show the asymptotic equal distribution of eigenvalues
ellipse.m
% Plot contours of an ellipse with large eigenvalue disparity
% and the results of steepest descent
ellipsecg.m
% Plot contours of an ellipse with large eigenvalue disparity
% and the results of conjugate gradient.
entplot.m
% plot the binary entropy function
expmod.m
% Test Cadzow's results on the sinusoidal modeling
fourser.m
% example Fourier series
hilb1.m
% Program to generate the data for the hilbert approximation to
% the exponential function
ifs3.m
% Plot the logistic map and the orbit of a point
ifs3b.m
% Plot the logistic map and the orbit of a point
% do not specify lambda and x0 here: it is done by an upper script
ifs4.m
% Demonstrate the logistic map
ifsex3.m
% find an affine transformation Ax + b that transforms from
% {x00,x10,x20} to {x01,x11,x21}
ifsfig1.m
% Make side-by-side figures
legendreplot.m
% Plot legendre polynomials
makeim.m
% make a test image for tomography example
matcond.m
% Make an ill-conditioned matrix of sinusoids.
matcond2.m
% Set up an ill-conditioned matrix of sinusoids
min1.m
% make the contour plot for wftest
min2.m
% make the contour plot for wftest
moveiter.m
% test the solution of a moving RHS in the equation Ax=b
newt1.m
% Demonstrate newton's stuff
newt2.m
% Demonstrate newton's stuff on Rosenbrocks function
oddeven.m
% data for odd/even game
orthog.mma
(* sample file for orthogonalization *)
patrec1.m
% generate some simple pattern recognition example data
plotI0.m
% Plot the Bessel function
plotJsurf.m
% plot a quadratice error surface
plotbpsk.m
% Plot the probability of error for BPSK
plotgauss.m
% Plot the Gaussian function
plotgauss2.m
% Plot approximations to the central limit theorem
plotgauss3.m
% plot a Gauss surface plot
plotwavelet.m
% plot the wavelet data
roc1.m
% plot the roc for a gaussian r.v.
roc2.m
% plot the roc for a a xi^2
roc3.m
% plot the roc for a gaussian r.v. and its conjugate
rosenbrock.m
% Plot the Rosenbrock function contours
rosengrad.m
%
% compute the gradient of the rosenbrock function for test purposes
% function grad = rosengrad(x)
saddle1.m
% make a saddle plot
scatter.m
% create a scatter plot to demonstrate principal component
scatterex.m
% create a scatter plot to demonstrate principal component
sigmoid.m
% plot the sigmoid function
steeperr.m
% Plot errors of the steepest descent
steeperrplot.m
% Make plots of error for steepest descent
steepest1.m
% Demonstrate steepest descent on Rosenbrocks function
sugitest.m
% test the Sugiyama algorithm
surf1.m
% make a surface plot
test2regress.m
% Test the formulas for regression in two dimensions
% input: x and y vectors
test2regress2.m
% Test the formulas for regression in two dimensions
% input: x and y vectors
testeigfil.m
% Test the eigenfilter stuff
testeigfil2.m
% Test the eigenfilter stuff
testeigfil3.m
% test the eigenfilter stuff
testexlms.m
% Test the lms in a system identification setting
% Assume a Gaussian input
testlms.m
% test the lms in an equalizer setting
% Assume a binary +/- 1 input.
testmusic.m
% Test the music algorithm
testnn1.m
% test the neural network stuff
testnn2.m
% test the neural network stuff
% (run testnn1.m first to get the network trained)
%
% does some plots after the initial training is finished
testnn3.m
% test the neural network stuff
% try different values of mu and alpha
% run testnn1 first to get the training data
testrls.m
% test the rls in an equalizer setting
% Assume a binary +/- 1 input.
testrls2.m
% test the rls in a system identification setting
% Assume a binary +/- 1 input.
testrls2ex.m
% test the rls in a system identification setting
% Assume a binary +/- 1 input.
testrlsex.m
% test the rls in an equalizer setting
% Assume a binary +/- 1 input.
testrot.m
% test the procrustes rotation
testtls.m
% Test tls stuff
vq1.m
% Generate random Gaussian data, determine a codebook for it, and plot
wftestcont.m
% make the contour plot for wftest
***************************************************************
Directory: solutions
***************************************************************
ator2.m
%
% Given the coefficients from a 2nd-order AR model
% y[t+2] + a1 y[t+1] + a2 y[t] = f[t+2],
% where f has variance sigmaf2, compute sigma_y^2, r[1], and r[2].
%
% function [sigma2,r1,r2] = ator2(a1,a2,sigmaf2)
%
% a1, a2 -- AR model coefficients
% sigmaf2 -- input noise variance
%
% sigma2 -- output noise variance
% r1, r2 -- covariance values
backdyn.m
%
% Backward dynamic programming
%
% function [pathlist,cost] = backdyn(H,W)
%
% H = graph
% W = costs
%
% pathlist = list of paths
% cost = cost of paths
backsub.m
%
% solve Ux = b, where U is upper triangular
%
% function x = backsub(U,b)
% U = upper triangular matrix
% b = right and side
%
% x = solution
bayesest1.m
% Example of non-Gaussian Bayes estimate
correst.m
%
% Estimate the autocorrelation function
% the returned values are offset (by Matlab requirements) so that
% r(1) = r[0], etc.
% Only correlations for positive lags are returned. For other values,
% use the fact that r[k] = conj(r[-k])
%
% function r = correst
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -